AN INNOVATIVE ROUTINE METHODOLOGY FOR ROAD SURFACE CONTROL

Keizo KAMIYA, NEXCO Research Institute, Japan
Akira KAWAMURA, Kitami Institute of Technology, Japan
Winfried GLATTKI, Federal Highway Research Institute, Germany
Andreas Ueckermann, Technical University of Aachen, Germany
A ROUTINE MONITORING METHOD USING WEIGHTED LONGITUDINAL PROFILE

Keizo KAMIYA, NEXCO Research Institute, Japan
Akira KAWAMURA, Kitami Institute of Technology, Japan
Winfried GLATTKI, Federal Highway Research Institute, Germany
Andreas Ueckermann, Technical University of Aachen, Germany
NEXCOs: Expert Companies of Expressways

- 8700km of Toll Expressways
- 50 years of Construction and Maintenance Experiences
Objectives of the joint study

- To identify the relation between road surface distress and weighted longitudinal profile
- To clarify accuracy of a mobile profiling system, named STAMPER
- To examine applicability of WLP for a routine monitoring, using STAMPER
Objectives of the joint study

- To identify the relation between road surface distress and weighted longitudinal profile
- To clarify accuracy of a mobile profiling system, named STAMPER
- To examine applicability of WLP for a routine monitoring, using STAMPER
Weighted Longitudinal Profile, by Maurer et al. (SURF 2008)

#1
FT

#2

#4

#3

#5

Gaussian unevenness line (irregular) : \(\Delta = 6\sigma \)

\(\Delta = \text{Maximum difference in height} \)
Original profile and WLP

What kind of distress?

- Wavy pattern: $\Delta \ll 6\sigma$
 - $\Delta = 24.3\text{mm}$
 - $\sigma = 5.5\text{mm}$

- Irregular pattern: $\Delta = 6\sigma$
 - $\Delta = 49.6\text{mm}$
 - $\sigma = 7.2\text{mm}$

- Impulsive pattern: $\Delta \gg 6\sigma$
 - $\Delta = 57.3\text{mm}$
 - $\sigma = 4.6\text{mm}$
Road Surface Distress and WLP using Japanese data

<table>
<thead>
<tr>
<th>Distress type</th>
<th>σWLP (mm)</th>
<th>ΔWLP (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culvert Box</td>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>Bridge Joint</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>Cracking</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>Concrete Joint in TN</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Patching</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

Total Distress Data

- Culvert Box
- Bridge Joint
- Cracking
- Concrete Joint in TN
- Patching
Distress type and WLP

Highly Correlated

- **Culvert Box**: $y = 0.1723x$, $R^2 = 0.9921$
- **Bridge Joint**: $y = 0.1651x$, $R^2 = 0.7361$
- **Concrete Joint in Tunnel**: $y = 0.1687x$, $R^2 = 0.7965$
- **Patching**: $y = 0.0782x + 5.3147$, $R^2 = 0.5944$

- $y/x = 0.172$: Wavy pattern
- $y/x = 0.165$: Irregular pattern
- $y/x = 0.169$: Irregular pattern
- $y/x = 0.143$: Transient pattern

Graphs showing the correlation between WLP and ΔWLP for different distress types.
IRI Gain and Octave band

![Graph showing IRI gain and wave number (cycle/m)]
Δ and σ for Octave bands #3-#6 from Original profile

- **③ Octave band**
 - $y = 0.2245x$
 - $R^2 = 0.2316$

- **④ Octave band**
 - $y = 0.1931x$
 - $R^2 = 0.8273$

- **⑤ Octave band**
 - $y = 0.139x$
 - $R^2 = 0.3328$

- **⑥ Octave band**
 - $y = 0.0987x$
 - $R^2 = 0.696$

Δ and σ for Octave bands #3-#6 from Original profile.

#4 Octave band
12.8 - 6.4m ≈ Truck vehicle’s axle distance
Objectives of the joint study

- To identify the relation between road surface distress and weighted longitudinal profile
- To clarify accuracy of a mobile profiling system, named STAMPER
- To examine applicability of WLP for a routine monitoring, using STAMPER
A Mobile Profiling System
by Prof. Kawamura, Kitami Inst.

System with Two Accelerometers for Measuring Profile, Enabling Real-time data collection

Unsprung Mass

Sprung Mass
Back-calculated profile (STAMPER) and Reference profile

Band pass filter 0.5 - 50m

STAMPER’s profile data is reliable.
Back-calculated profile (STAMPER) and LASER profile: Compatible

Bridge Joint (100m)

\[y = 0.1647x + 0.0169 \]
\[R^2 = 0.9568 \]

\[y = 0.1236x + 0.0704 \]
\[R^2 = 0.9492 \]

Bridge Joint (100m)

\[y = 0.1079x + 0.0643 \]
\[R^2 = 0.8442 \]

\[y = 0.1403x + 0.0044 \]
\[R^2 = 0.872 \]

Patching (100m)

\[y = 0.1128x + 0.0501 \]
\[R^2 = 0.9058 \]

\[y = 0.1998x + 0.0107 \]
\[R^2 = 0.9867 \]

Patching (100m)

\[y = 0.1219x + 0.0192 \]
\[R^2 = 0.8921 \]

\[y = 0.1998x + 0.057 \]
\[R^2 = 0.9609 \]
Objectives of the joint study

- To identify the relation between road surface distress and weighted longitudinal profile
- To clarify accuracy of a mobile profiling system, named STAMPER
- To examine applicability of WLP for a routine monitoring, using STAMPER
STAMPER study on AUTOBAHN (2007)

<table>
<thead>
<tr>
<th>Section</th>
<th>Route</th>
<th>Pavements</th>
<th>Section Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Autobahn</td>
<td>Asphalt</td>
<td>2,700</td>
</tr>
<tr>
<td>#2</td>
<td>Autobahn</td>
<td>Asphalt</td>
<td>43,100</td>
</tr>
<tr>
<td>#3</td>
<td>Autobahn</td>
<td>Asphalt</td>
<td>10,400</td>
</tr>
<tr>
<td>#4</td>
<td>Autobahn</td>
<td>Concrete</td>
<td>10,600</td>
</tr>
<tr>
<td>#5</td>
<td>Autobahn</td>
<td>Concrete</td>
<td>10,200</td>
</tr>
<tr>
<td>#6</td>
<td>Autobahn</td>
<td>Concrete</td>
<td>10,300</td>
</tr>
<tr>
<td>#7</td>
<td>Autobahn</td>
<td>Concrete</td>
<td>3,300</td>
</tr>
<tr>
<td>#8</td>
<td>Autobahn</td>
<td>Concrete</td>
<td>10,300</td>
</tr>
<tr>
<td>#9</td>
<td>B Line</td>
<td>Asphalt</td>
<td>12,200</td>
</tr>
<tr>
<td>#10</td>
<td>Autobahn</td>
<td>Concrete</td>
<td>12,700</td>
</tr>
<tr>
<td>#11</td>
<td>B Line</td>
<td>Concrete</td>
<td>14,100</td>
</tr>
<tr>
<td>#12</td>
<td>Autobahn</td>
<td>Asphalt</td>
<td>29,600</td>
</tr>
<tr>
<td>#13</td>
<td>Autobahn</td>
<td>Concrete</td>
<td>19,800</td>
</tr>
<tr>
<td>#14</td>
<td>Autobahn</td>
<td>As on Con</td>
<td>10,600</td>
</tr>
<tr>
<td>#15</td>
<td>Autobahn</td>
<td>As on Con</td>
<td>5,000</td>
</tr>
<tr>
<td>#16</td>
<td>Autobahn</td>
<td>As on Con</td>
<td>8,400</td>
</tr>
<tr>
<td>#17</td>
<td>Autobahn</td>
<td>Asphalt</td>
<td>3,800</td>
</tr>
</tbody>
</table>
IRI on AUTOBAHN & NEXCO Motorway

- NEXCO: 118,552 units
- Autobahn: 954 units

AUTOBAHN 190.8km
NEXCO 23,710.2km

STAMPER’S Low Cost & Efficiency

STAMPER 5 days
LASER 2 years
PSD on AUTOBAHN asphalt sections

- Patching Site (#12)
- No Patching Site (#3)

The graph shows the PSD of Elevation (m²/m/c) against wave number (cycle/m). The graph highlights two wavelengths:

- Wave number 50.0m corresponds to a PSD of approximately 1E-11 at low wave numbers.
- Wave number 1.0m corresponds to a PSD of approximately 1E-08 at higher wave numbers.

The graph indicates that the PSD at Wave number 1.0m matches the feeling in driving, suggesting a significant impact on driving comfort at this wavelength.
Distributions of σ_{WLP} and ΔWLP

matches feeling in driving
Δ and σ for every Octave band from Original profile
Octave band #4 is generally important, while band #6 can differentiate when Δ is lower.
Summary and Conclusion

• A correlation between every surface distress type and WLP was found.
• STAMPER’s back-calculated profile data is compatible with laser profile data.
• Applicability of WLP using STAMPER was confirmed.
• WLP using STAMPER is recommended as a routine monitoring method.
<table>
<thead>
<tr>
<th>City</th>
<th>Annual Rainfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seoul</td>
<td>1,343 mm</td>
</tr>
<tr>
<td>Jakarta</td>
<td>1,903 mm</td>
</tr>
<tr>
<td>Bangkok</td>
<td>1,530 mm</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>2,360 mm</td>
</tr>
<tr>
<td>Manila</td>
<td>1,715 mm</td>
</tr>
<tr>
<td>Kula Lumpur</td>
<td>2,390 mm</td>
</tr>
<tr>
<td>Zurich</td>
<td>1,120 mm</td>
</tr>
<tr>
<td>New York</td>
<td>1,123 mm</td>
</tr>
</tbody>
</table>

70% Land: Mountains

Source: Ministry of International Affairs Communications
Country Information

82 Million People

Berlin 570 mm

Land 349,000 km²
Forest 111,000 km²

Mountain: 30%

128 Million People

Tokyo 1500 mm

Land 365,000 km²
Forest 250,000 km²

Mountain: 70%

Source: Ministry of International Affairs Communications
Critical Conditions

Less plain areas (70%: Mountains)

- No alternative routes
- Heavy traffic loads

High rainfall

Lane basis repair

Severity to pavement

NEXCO: Nippon Expressway Company Ltd.