

A MOBILE PROFILOMETER FOR ROAD SURFACE MONITORING BY USE OF ACCELEROMETERS

Presented by

Kazuya TOMIYAMA (Kitami Institute of Technology, Japan) Co-Authors

Akira KAWAMURA (Kitami Institute of Technology, Japan) Shigenori NAKAJIMA (WAcom Hokkaido Co., Ltd., Japan) Tateki ISHIDA (Hokkaido Regional Development Bureau, Japan) Masakazu JOMOTO (Taisei Rotec Corporation, Japan)

Acknowledgment

MONDIAL

Kitami City

The authors appreciate the assistance from the Road Control Section of Urban Construction Department of Kitami City for conducting this study

- **1. Motivation and Objective**
- 2. Concepts of the New System
- 3. Configuration and Algorithm
- 4. Verification Experiment
- 5. Application Case Study
- 6. Conclusions

1. Motivation and Objective (1)

Evenness/Roughness

related to... User's safety and comfort, Vehicle operating costs, Road side environment, etc.

required to...

Objective and high precision data collection
 High frequency monitoring

1. Motivation and Objective (2)

Current Surface Monitoring

- ✓ High-speed profilers (response- or profile-based)
- ✓ Visual inspections

High-speed Laser Profiler

problems are...

WORLD ROA MONDIALE DE LA ROUTI

too much cost for high-speed profilers

- Calibration of response type systems
- > the lack of accuracy by visual inspections

- 1. Motivation and Objective (3)
- **Objective of this Study**

NORLD ROAI

- **Development of a Mobile Profilometer**
 - ✓ using two small accelerometers
 - collecting surface profiles and its roughness characteristics in real time
 - making cost-effective, time-stable, and easily workable operation

2. Concepts of the New System (1)

speed of

normal use

30 km/h (19 mph)

Based on the Quarter-Car Model ✓ measuring surface profiles

✓ calculating the IRI

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

IRI

(m/km) (in/mi) 20 ⊣–

WORLD ROAI

2. Concepts of the New System (2)

Profiler Class – how the measures related to the IRI

- Class 4 –can only be compared to IRI by subjective estimation (ex. Visual inspection)
- Class 3 calculating IRI by correlation with reference measures (ex. RTRRMS)
- Class 2 a profile-based method that is calibrated independently of other roughness measuring instruments (ex. Laser-profiler)
- Class 1 a profile-based method if it is so accurate that further improvements in accuracy would not be apparent (ex. Rod & Level)

KITAMI

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

2. Concepts of the New System (3)

Target of the System Development

3. Configuration and Algorithm (1)

Using Two Small Accelerometers

Simply Operational (Class 3!!)

An Onboard Computer

SURF 2012

KITAM]

3. Configuration and Algorithm (2)

Can be Mounted in Any Vehicles

WORLD ROA ASSOCIATION MONDIALE DE LA ROUTE

Passenger/Commercial Vehicle (Road Patrol Car)

✓ Mechanically implements the quarter-car model
 ✓ Measuring surface profiles (Class 2!!)
 ✓ Independent of vehicle model and driving speed

ΚΙΤΔΜ΄

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

3. Configuration and Algorithm (3)

Profile and IRI Measurement Algorithm

4. Validation Experiment (1)

VS.

Data Collection

WORLD ROA ASSOCIATION MONDIALE DE LA ROUTE

Survey Vehicle Mobile Profilometer

4. Validation Experiment (2)

Mobile Profilometer

✓ SUV Type (F
 ✓ 40, 60, and 8

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

✓ 200-m long
 ✓ 0.1-m samp
 ✓ 0.5 – 50-m v

Wavy Characteristics of Surface Profiles

KITAMI

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

4. Validation Experiment (3)

Comparison of Profile Measurements

Profile Measurement Result

Closely agree with the reference profile

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

4. Validation Experiment (4)

Comparison of Elevation PSD

Same spatial characteristic of the profiles

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

IRI Measurement by the Mobile Profilometer ✓ arbitrary intervals

✓ real time calculation and display

IRI for 200-m Interval

The New Profilometer	Poforonco Drofilor
(Driving Speed)	Reference Fromer
2.80 (40km/h)	
3.03 (60km/h)	2.78
2.72 (80km/h)	
(Unit: mm/m)	
within 10% accuracy	

KITAM]

WORLD ROAL MONDIALE DE LA ROUTE

4. Validation Experiment (6)

Continuous IRI ✓ available for Localized Roughness Detection

IRI (10-m continuous)

Finding the most severe parts of the profile

5. Application Case Study (1)

Roughness Data Coll

WORLD ROAL ASSOCIATION MONDIALE DE LA ROUTE

- ✓ in the urban area of Japan in November
- on a national highwat
 city roads
- ✓ normal driving spee
- ✓ measuring IRI value

Location of Kitami City

KITAMI

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

5. Application Case Study (2)

5. Application Case Study (3)

Frequency Distribution of IRI

National Highway

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Prefectural Road

City Road

will be improved after more data are collected
 contributes to prioritize budget

6. Conclusions (1)

WORLD ROAL ASSOCIATION MONDIALE DE LA ROUTE

Development of a Mobile Profilometer

- ✓ consists of two accelerometers
- measures surface profile
- calculates the IRI based of the profile measurements
- ✓ has good correlation with Class 1 profilers
- ✓ achieves the accuracy with 10% for the IRI
- ✓ enables localized roughness detection

6. Conclusions (2)

NORLD ROAI

- Case Study (IRI Mapping and Frequency Distribution) ✓ visually inspects pavement conditions using IRI mapping in the road network
 - contributes to plan pavement maintenance and rehabilitation projects at the network level
 - evaluates the current status of roughness
 levels against the whole of a road network
 - prioritize budget allocation for pavement management projects

THANK YOU FOR YOUR KIND ATTENTION

Tomiyama, K., Kawamura, A., Nakajima, S., Ishida, T., and Jomoto, M tomiyaka@mail.kitami-it.ac.jp