

Road maintenance policy based on an expert asset management system

- Concept and case study -

<u>Author</u> Philippe LEPERT IFSTTAR Nantes

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Outline of the presentation

- Road asset impacts rating
- Road asset maintenance programing
- Maintenance strategies
- Life cycle simulation
- Case study

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Road maintenance impact rating

- Maintenance activities impact all road stakeholders : Financers, Agencies, Users, Neighbors, Society...
- Need for ratings (or Key Performance Indicators KPIs) to quantify these impacts.
- KPIs are criteria to assess and therefore to decide maintenance strategies.
- KPIs are aggregation and combination of elementary data

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Road maintenance impact rating

- "Road Condition" is synthetic KPIs which reflect impacts on financers, agencies and users.
- Most countries are using some kind of PCI or PSI.
- France is using two indicators (Structure, Surface) which varies from 0 (ruin) to 20 (as-new).
- KPIs are often irrelevant for diagnosis and suggestions of remedial measures (critical information lost during the aggregation process)

Road maintenance programing

- When, where and how should be the numerous network sections maintained ?
- With a given periodicity ?
 - Sometimes used at the design stage, but not very realistic
 - Rarely applied

WORLD ROAD

ELAROU

- Depending on the section condition ?
 - Applies some strategies that define the need and priority of road works depending on road type, road condition, traffic, climate...

Maintenance strategies

• From a very simple one

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

If IRI < 5 No intervention
If IRI > 5 Overlay (traffic)

- To multi-criteria grids
 - Depending on cross analysis of extension of several distresses
- To expert strategies
 - Algorithms

Norfolk, Virginia / September 19-22, 2012 7th symposium on pavement surface characteristics

Strat_C	Conditions	
	٩	* *
Def/F_Fatigue Arrach ⊕ GB	Description	
⊕- GH ou MIX Fusion	SI (DEFT>0 OU F_TH>0)	-
Epaisseurs	<pre># Pas de deformations graves SI (DEFG=0) T1_4=GRILLE_XY_A(2,3,DEFT,F_TH,\ 0,10,100,\ 0,10,50,100,\ "","ReparLoc+BBTM","ReparLoc+ECF+BBTM",\ "BBM","BBM","BBM") FIN # I1 y a des deformations graves SINON T1_4=GRILLE_XY_A(2,3,DEFT,F_TH,\ 0,10,100,\ 0,10,50,100,\ "ReparLoc+Colma","ReparLoc+BBTM","ReparLoc+ECF+BBTM",\ "FRAIS+BBSG","FRAIS+BBSG","FRAIS+BBSG") FINSI</pre>	E
Dupliquer	FINSI SI (F_TH=0)	
Nouveau (niveau inférieur)	<pre>T1_4=SUPPRIMER_TACHE(T1_4, "ReparLoc") T1_4=SUPPRIMER_TACHE(T1_4, "Colma") FINSI</pre>	
Renommer Supprimer	SI (FLTOT=0) T1_4=SUPPRIMER_TACHE(T1_4, "Colma")	-
Monter Descendre Ouvrir l'arbre Fermer l'arbre	Substitution de technique Multiplication des seuils >> Export HTML Aide OK	Annuler

SURF 2012

Maintenance Strategies

Life cycle simulation

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Case study

- 2 500 km of roadways
- Located in west of France
- Data available from 2005
- Rather homogeneous in functions
- A "reference" strategy technically sound
- A "reference" strategy applied to the whole network
- Simulation over 15 years

Case study

- ✓ Reference strategy
- ✓ Overall budget of 0.85€/m² (~ US\$ 0.09/ft²)

Asset Index evolution from 2005 to 2019

- All budget is employed
- Condition indicator slightly increase from 17 to 18

Case study

MONDIALE DE LA ROUTI

✓ Reference strategy

- ✓ Overall budget of 0.95€/m² (~ US\$ 0.11/ft²)
 - Not all budget is employed (not enough distresses)
 - Condition indicator slightly • increase from 17 to 18
 - → Too high annual budget for the reference strategy

Case study

MONDIALE DE LA ROUTE

- ✓ Reference strategy everywhere
- ✓ Overall budget of 0.75€/m² (~ US\$ 0.08/ft²)
 - All budget employed •
 - Condition rating • decrease from 17 to 16,5
 - ➔ Insufficient budget for the reference strategy

Case study

The optimal budget for the reference strategy is about 0.85 €/m² (~ US\$ 0.09/ft²)

• A new strategy is generated by multiplying all thresholds by 1.5

➔ It should allow more distresses before an intervention is triggered

- → It should triggered less interventions
- → It should required less budget.
- The same approach is conducted. The optimal budget is about 0.75€/m² (~ US\$ 0.08/ft²)

Case study

Optimal budget for a given strategy

SURF 2012

Case study

SURF 2012

Conclusions

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- 1. We defined flexible maintenance strategies deriving interventions from real road condition
- We were able to assess the impact of this strategy over 15 years by a medium or long term simulation
- 3. It was then possible to compare different strategy and find an optimum, for a given type of impact
- 4. The various strategy were tested within a given family (by only varying thresholds); more different strategies can be compared as well.

Conclusions

WORLD ROAD

- 5. Comparison criteria was the impact on road condition; other criteria can be used as well.
- 6. Especially, socio-economic and/or environmental criteria can be used
- The same method used for strategy analysis is applied for maintenance programming → full consistency.