SURF 2012

SUSCEPTIBILITY PROFILES FOR VEHICULAR ACCIDENTS BASED ON PAVEMENT AND ENVIRONMENTAL CHARACTERISTICS

Presented by Jairo Sanabria Sandino, University of Costa Rica LanammeUCR

SURF 2012

Objetive

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

 Using some measured and inherent factors, prioritize the management required in main roads based in susceptibility profiles of some pavement surface characteristics that contribute to generate a high level of exposure to crashes for the users. WORLD ROAD

National Roads Selected

•Four national routes were selected for the study, routes 1, 2, 32 and 34.

• To create the profile, the analysis unit used were 100m segments.

•Using GIS systems, each study factor was assigned to the respective unit of analysis for subsequent combination.

SURF 2012

Norfolk, Virginia / September 19-22, 2012 7th symposium on pavement surface characteristics

General Methodology

Methodological Framework

Susceptibility Profile - Components

The main components evaluated use the respective weight assigned for the selected classes and factors to create **Cumulative Frequency Distribution**

Class		Factor
	Coomotrio Componente	Vertical Alignment
Inhoront	Geometric Components	Horizontal Alignment
Innerent	Climata Componenta	Rain Days per Year
	Climate Components	Average Annual Precipitation
	Horizontal Pavement	Center Line Retroreflectivity
Neasured	Markings	Border Line Retroreflectivity
CICILICIIIS	Surface Grip	Grip Number

Inherent Components

Inherent Geometric Components

To analyze the geometric components, we use categorized elements given by the administration using control sections:

Geometric Factor	Indicator	
Vertical Alignment	Terrain categories	
Horizontal Alignment	Control sections categories based on curves per kilometer	

Terrain

The administration use 4 categories to classify the control sections:

Categories	Description	
1	Flat	
2	Wavy (Soft)	
3	Wavy (Hard)	
4	Mountanious	

SURF 2012

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Alignment

This parameter accounts the quantity of curves per kilometer in each control section, and uses the classes asigned by the administration

Categories	Description			
1	15 – more	e [curves/km]	very sinuous road	
2	10 – 15	[curves/km]	frequent curvy road	
3	5 – 10	[curves/km]	road somewhat sinous with sharp curves	
4	2 – 5	[curves/km]	road with a few curves	
5	0-2	[curves/km]	straight road with soft curves	

SURF 2012

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Inherent Climate Components

The climate conforms a random variable whose distribution requires the use of statistical data to ponder the behavior.

Climate Factor	Indicator	
Temporal distribution	Rain Days per Year	
Quantity distribution	Averaged Annual Precipitation	

Rain Days per Year

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

This statistical data represents the rain temporal distribution which affects the retroreflective and grip characteristics.

Categories	Description		
1	0 – 20 % [rain days per year]	Very Low	
2	20 – 40 % [rain days per year]	Low	
3	40 – 60 % [rain days per year]	Regular	
4	60 – 80 % [rain days per year]	High	
5	80 – 100 % [rain days per year]	Very High	

Averaged Annual Precipitation

This statistical data represents the quantity of annual precipitation, this information is derived from climatological studies for Costa Rica (Barrantes, 1986)

Categories	Description
1	2000 or less [mm/year]
2	2000 - 3000 [mm/year]
3	3000 - 4000 [mm/year]
4	4000 or more [mm/year]

WORLD ROAD

Inherent Components - Weight

It's during the feasibility and design stages, that the climatic and geometric components are dynamic elements in the mitigation of safety issues, but once the road is built these factors become implicit parameters of the road.

The weight given range: 0 to 3

Based on Severity rating categories using 10 as max

SURF 2012

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Inherent Components - Weight

Class	Factor	Category	Weight
		1	0
	Terrain	2	1
Inherent	(Vertical Alignment)	3	2
Goomotrio	(''''''''''''''''''''''''''''''''''''''	4	3
Geometric		5	0
Components	Alignment Categories	4	1
Componente	(Horizontal Alignment)	3	2
	(······g······)	1 or 2	3
		1	0
	Pain Days por Voar	2	1
Inherent	Rain Days per rear	3	2
Climato		4 or 5	3
Ciinale		1	0
Components	Averaged Annual	2	1
	Precipitation	3	2
		4	3

Measured Components

Measured Components

To analyze the susceptibility profiles associated to vehicular crashes, characteristics were measured two elements related to road safety:

Class		Factor
	Horizontal Pavement	Center Line Retroreflective
Neasured	Marks	Border Line Retroreflective
CICILICIIIS	Surface Grip	Grip Number

WORLD ROAD

Horizontal Pavement Marks

During night or dark conditions the retroreflectivity characteristic is the critical factor associated with the pavement marks. Categories based on the ASTM E 1710 for the laser equipment and the recommended minimum values (Debaillon C., Carlson et al, 2007)

Condition	Color	Rural Roads < 40 mph	Secondary Roads 45 - 55 mph	Main Roads >60 mph	nammeUCR
With	White	30 mcd/lx/m ²	35 mcd/lx/m ²	70 mcd/lx/m ²	
R.P.M.	Yellow	30 mcd/lx/m ²	35 mcd/lx/m ²	70 mcd/lx/m ²	RANVER
Without	Blanco	85 mcd/lx/m ²	100 mcd/lx/m ²	150 mcd/lx/m ²	
R.P.M.	Amarillo	55 mcd/lx/m ²	65 mcd/lx/m ²	100 mcd/lx/m ²	LASERLUX CEN 30

WORLD ROAD

Retroreflectivity Category

To simplify the analysis, it is assumed the presence of RPM to set the minimum value to use, and provides that the maximum value used in the absence of RPM as an optimal condition, regardless of color.

Main Roads Category 80 km/h or more	Description		
2	70 or less	Bad	
3	[mcd/lx/m ²]	Dau	
2	70 - 150	Cood	
۷۲	[mcd/lx/m ²]	Guu	
1	150 or more	Vory Cood	
T	[mcd/lx/m ²]		

Center Line Retroreflective

Border Line Retroreflective

Surface Grip Category

The Grip Number, measures microtexture characteristics associated with braking in rainy conditions, the categories used in the National Road Evaluation of Costa Rica:

Grip Number	Condition	Category
< 0.5	Bad	4
0.50 - 0.60	Regular	3
0.60 - 0.78	Good	2
> 0.78	Very Good	1

Grip Number

Grip Number Category

WORLD ROAD

Measured Components - Weight

the horizontal retroreflective signs and grip conditions are related to the level of maintenance they receive, and periodic measurements are required in order to establish the functional condition, are dynamic elements in the mitigation of safety issues.

The weight given range: 0 to 8

Based on Severity Rating Categories using 10 as max

Measured Components - Weight

Class	Factor	Category	Weight
Horizontal Pevement Marks	Center Line	1	0
	Potrorofloctivo	2	4
	Relibiellective	3	8
	Border Line Retroreflective	1	0
		2	4
		3	8
Surface Grip	Grip Number	1	2
		2	4
		3	6
		4	8

Frequency Distribution and Analysis

Spatial Combination

•Using GIS, we proceed to characterize the units of analysis.

•Each analysis unit combine the weights assigned to each measured or inherent factor to create a frequency distribution

Frequency Distribution

MONDIALE DE LA ROUTE

Cumulative Frequency Distribution

Susceptibility Profiles

Susceptibility Distribution

Analysis in Areas with Concentration of Accidents

Project Level Information

Using visual auscultation systems and road safety audit lists to analyze very high susceptibility that match accident zones allows detailed information for the administration.

Points Results

Safety Audit List Results

SURF 2012

Conclusions and Recommendations

Conclusions

WORLD ROAD

•This methodology allows to identify sections with different levels of susceptibility for the user to events which lead to the accident.

•The results obtained allow us to objectively and scientifically, identifying stretches of roads where interventions are needed in a timely way.

•This methodology allows the possibility of achieving a significant impact in reducing the risk of accidents related to the convergence of the factors associated with the administration management.

Conclusions

WORLD ROAD

•The 61% of the routes studied had conditions of high and very high susceptibility.

•The evaluation reveals a condition of high risk with regard to the braking of the vehicle under rainy conditions.

•The analysis using visual auscultation systems combined with road safety audit lists allows a project level information, useful to complement the management activities required from the administration.

Recommendations

WORLD ROAD

•The methodology can be replicated to other routes, keeping the categories used for the factors, but the values and ranges of susceptibility to the analysis of frequencies vary and should match the behavior of the new study.

 Include other parameters or indicators of road safety, such as the presence of roadside barriers and shoulder width, etc., which are representative in the analyzes of accident concentration sections

SURF 2012

Norfolk, Virginia / September 19-22, 2012 7th symposium on pavement surface characteristics

LanammeUCR 2012

JAIRO.SANABRIASANDINO@UCR.AC.CR