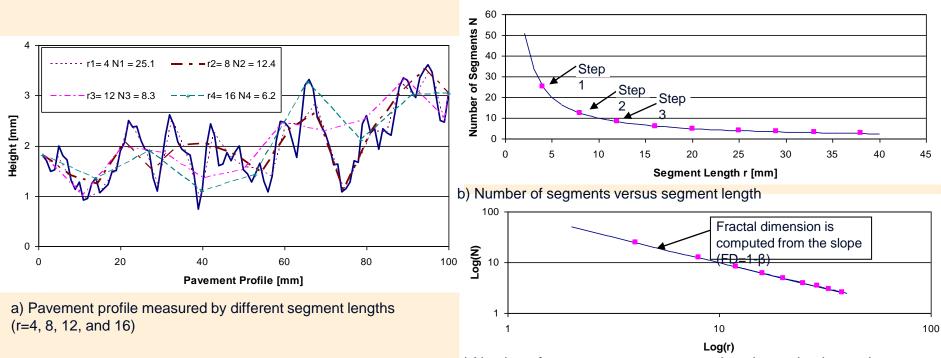


CHARACTERIZING PAVEMENT SURFACE MACROTEXTURE USING FRACTALS

Presented by Ahmed Shalaby, Ph.D., P. Eng. University of Manitoba

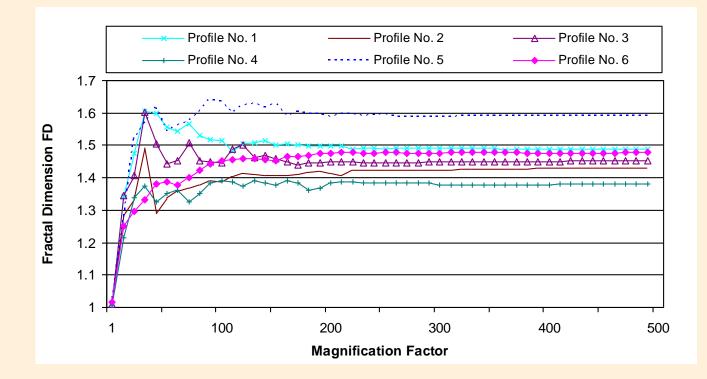


3D Pavement Surface Macrotexture: Measurements and Friction Relationships

SURF 2012

- Methods for computing the fractal dimension
- 2D/ 3D Fractal
- Using fractal analysis to examine texture properties
- Field Application
 - Fractal Analysis of 2D Profiles
 - Fractal Analysis of 3D Surfaces
- Estimating Mean Profile Depth
- Results and conclusions

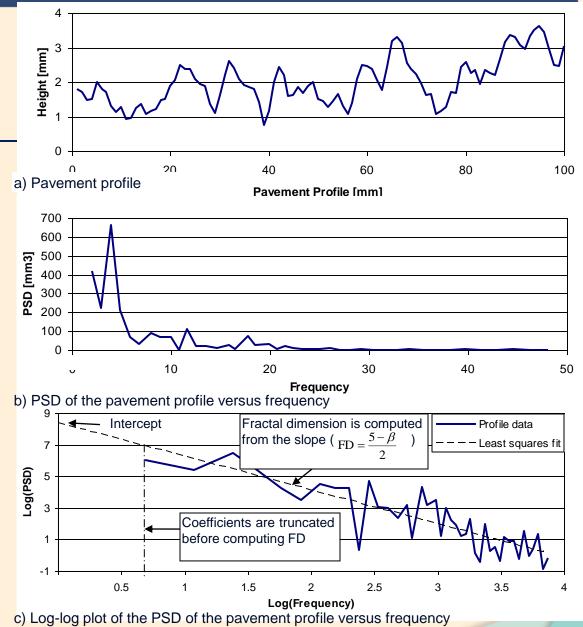
The divider method for computing the fractal dimension



c) Number of segments versus segment length on a log-log scale

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

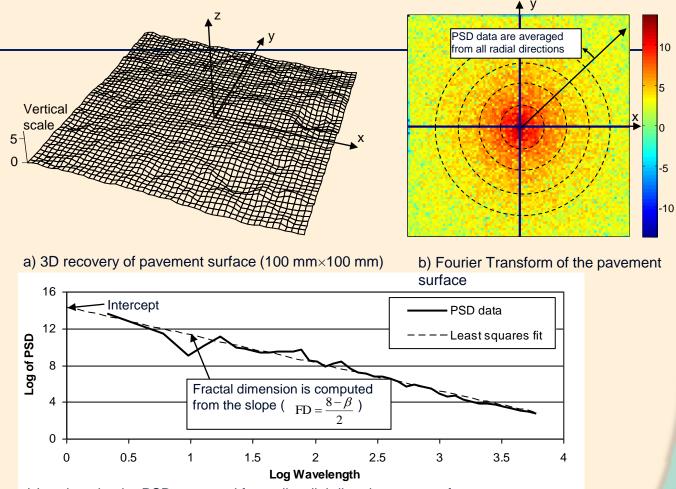
Effect of magnifying the vertical axis of pavement profiles


Norfolk, Virginia / September 19-22, 2012

7th symposium on pavement surface characteristics

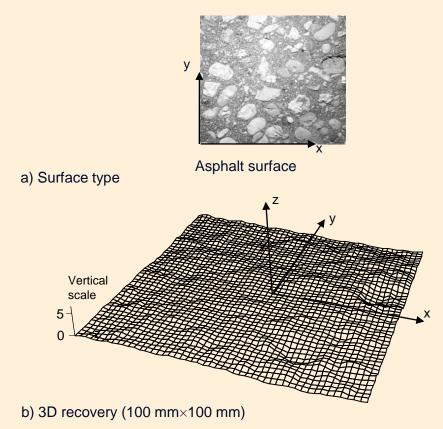
2D Fractal

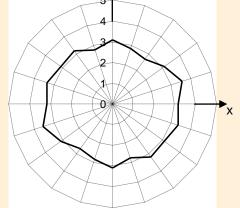
WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE


Fractal dimension of 2D profile by the power spectral density method

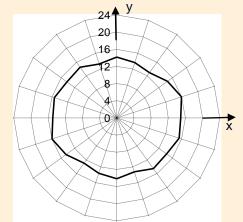
Fractal Dimension of 3D Surface

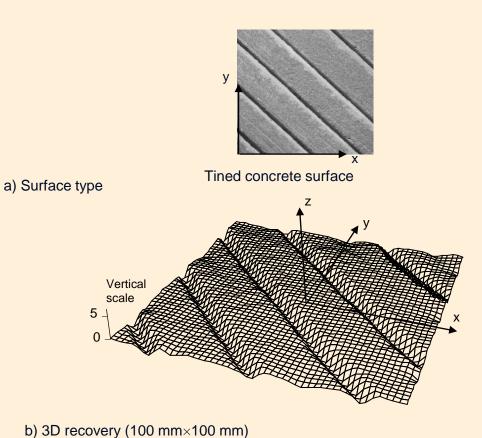
Fractal dimension of 3D surface by the power spectral density method

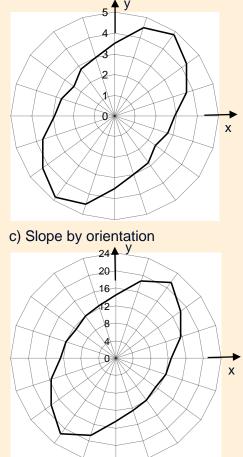

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE



c) Log-log plot the PSD averaged from all radial directions versus frequency


Using fractal analysis to examine surface isotropy: Asphalt surface


SURF 2012


c) Slope by orientation

d) Log of PSD intercept by orientation

Using fractal analysis to examine surface isotropy: Tined concrete

SURF 2012

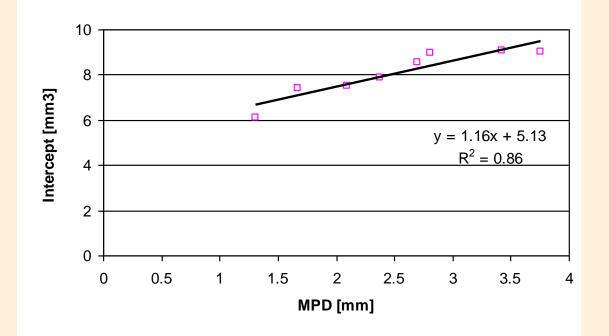
d) Log of PSD intercept by orientation

Fractal Analysis of 2D Profiles

Descriptive Statistics (48 Profiles)

	MPD	FD _{dv}	FD_psd	Intercept
Mean	2.52	1.5	1.5	8.05
Standard Error	0.15	0.01	0.03	0.22
Standard Deviation	1.05	0.1	0.2	1.55
Sample Variance	1.09	0.01	0.03	2.41
Minimum value	0.58	1.3	1.0	4.21
Maximum value	5.11	1.8	1.9	11.56

Fractal analysis of 2D Profiles


WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Fractal analysis of 2D Profiles grouped by samples

Sample	MPD		FD _{dv}			FD _{psd}			
	Average	Min	Max	Average	Min.	Max.	Average	Min	Max
A1	1.3	0.6	3.0	1.5	1.4	1.6	1.7	1.4	1.9
A2	1.7	0.7	2.8	1.6	1.4	1.8	1.5	1.3	1.8
B1	2.1	1.6	2.5	1.5	1.3	1.7	1.5	1.3	1.8
B2	2.4	1.8	3.5	1.5	1.4	1.6	1.5	1.0	1.8
C1	2.7	2.3	3.3	1.5	1.3	1.6	1.5	1.3	1.5
C2	2.8	1.9	4.1	1.4	1.3	1.6	1.3	1.2	1.5
D1	3.4	2.5	4.0	1.5	1.4	1.5	1.4	1.1	1.7
D2	3.8	2.5	5.1	1.5	1.5	1.5	1.5	1.4	1.6

Fractal analysis of 2D Profiles

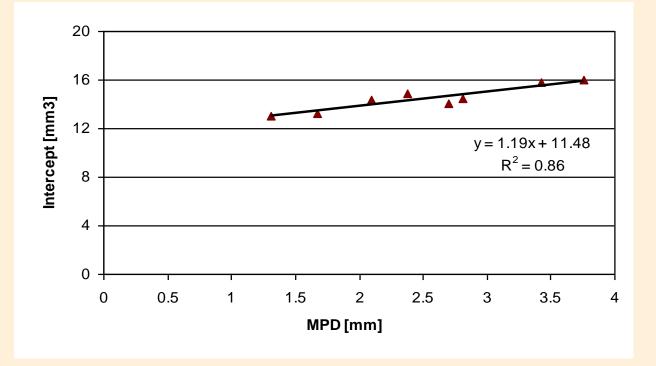
SURF 2012

Fractal analysis of 2D Profiles grouped by samples (PSD method): Mean profile depth versus Intercept

Fractal Analysis of 3D Surfaces

Descriptive Statistics (8 Samples)

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE


Sample	FD _{psd}			
	Average	Min.	Max.	
A1	2.7	2.6	2.9	
A2	2.7	2.5	2.8	
B1	2.5	2.3	2.7	
B2	2.5	2.2	2.7	
C1	2.8	2.6	2.9	
C2	2.8	2.5	3.0	
D1	2.5	2.2	2.7	
D2	2.5	2.3	2.7	

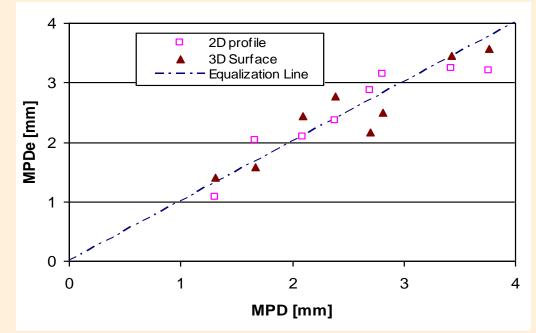
Fractal dimension of the 3D surface

	FD _{psd}	Intercept
Mean	2.6	14.47
Standard Error	0.04	0.38
Standard	0.12	1.07
Deviation		
Sample Variance	0.01	1.14
Minimum	2.5	12.99
Maximum	2.8	15.95

Fractal Analysis of 3D Surfaces

SURF 2012

Fractal analysis of the 3D surfaces: Mean profile depth versus Intercept



Estimating Mean Profile Depth

 $MPD = 0.73 Intercept_{T} + 1.32 - 4.69 D_{T}$

 $SSE = \sum (MPD_e - MPD)^2$

The sum of squared errors (SSE) for estimating MPD from 2D profiles is 0.68 [mm] while for estimating MPD from 3D surface is 0.71 [mm].

SURF 2012

FIGURE 8 Estimating Mean Profile Depth using Intercept

WORLD ROAD

Summary and Conclusions

- Two methods for computing fractal dimension of pavement surface texture have been presented; the divider method (DV) and the power spectral density method (PSD
- The concept of utilizing the fractal analysis as a measure of pavement surface texture has been presented.
- Intercept is found to be a scale parameter independent of fractal dimension that can be used to characterize pavement macrotexture.
- Intercept yields a reasonable estimation of the mean profile depth.

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Summary and Conclusions

- The PSD method could reveal information about directionality, roughness, and friction properties of pavement surface.
- The fractal analysis should not be seen as a replacement of the current methods.
- The fractal analysis can potentially describe the complexities of pavement surface texture.
- It contributes to a higher understanding of the texture roughness and provides both crosscheck and a basis for further applications.

Norfolk, Virginia / September 19-22, 2012 7th symposium on pavement surface characteristics SURF 2012

Thank You