

SIMULATIVE POLISHING IN THE LABORATORY

Alan Dunford, <u>Helen Viner</u>, Peter Roe (TRL) Louise Caudwell (Highways Agency)

Contents

- Overview
- Description of Wehner-Schulze machine
- Assessment of polishing cf. traffic
- Skid resistance of blended aggregate
- Conclusions

Overview

- Specification for aggregates used in surface course uses PSV to ensure minimum standard for polish resistance
- Useful tool but with a number of limitations
- UK programme to evaluate Wehner-Schultz machine
 - Can it compliment or replace PSV test?
 - Final part of this programme reported here following field trial
- W-S device used to investigate effect of blending different sources of aggregate
 - Sources of highly polish-resistant aggregates are limited
 - Skid resistance on UK motorways exceeds current requirements!

Wehner-Schulze machine

SURF 2012

Wehner-Schulze machine

SURF 2012

Field trial

- Compares effect of accelerated polishing in W-S machine with that of traffic
- Asphalt mixtures prepared in laboratory to UK SMA specification
- 225mm cores
 - Embedded in trial sites
 - Polished in laboratory
 - Subject to weathering

Field trial

 TRL pavement test facility used to test method of embedding core samples

Sample composition

ID	Coarse	Coarse	Nominal PSV	Fine
	aggregate	aggregate	of coarse	aggregate
		type	aggregate	
1	A	Felsite	59	L
2	В	Porphry	60	В
3	В	Porphry	60	L
4	С	Gritstone	65	С
5	D	Granite	57	L
6	E	Basalt	55	L
7	F	Gravel	-	L
8	G	Dolerite	65	L
9	Н	Gritstone	68	L
10	С	Gritstone	65	L
11	J	Dolerite	62	L
12	K	Granite	52	L
13	L	Granite	53	L
14	М	Limestone	36	L

- 14 mix designs
- 12 coarse aggregates
- 3 traffic levels
 - 200 CVD
 - 1200 CVD
 - 4500 CVD
 - 4 specimens from each mix
- Retrieved at intervals
 up to 3 years traffic

Visual assessment of polishing

Traffic level:

SURF 2012

Friction results for samples retrieved from trial sites

Friction results

Road specimens compared with W-S specimens

SURF 2012

Friction results

Road specimens compared with W-S specimens

SURF 2012

Comparing polishing

WORLD ROAD

- Demonstrated correlation between traffic and machine polishing
- Asphalt that performs poorly in the machine will perform poorly in the road
- Only compared non-event sections
- Machine applies a controlled 'amount' of polishing rather than simulating polishing by traffic

MONDIALE De la Rou

Blended aggregates

- Limited stocks of polish resistant aggregate
- Aggregate hauled from limited number • of quarries
- Trunk road network over-performing •
- Require a mechanism for use of low **PSV** aggregate
- Lab experiments to investigate skid • resistance performance

e.g. µ = a

e.g. $\mu = b$

SURF 2012

 $\mu = a/2 + b/2$?

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Friction results for individual aggregate sources

Combinations of two aggregates by mass:

- 100 %
- 75 / 25 %
- 50 / 50 %
- 25 / 75 %
- 100 %

Blended aggregates

MONDIALE DE LA ROUT

- Calculate an expected friction for blended specimens
 - Based on measurements of µ on 100% specimens
- Weighted depending on mass of each constituent
- Compare with actual measurements

$$\mu_{calc} = \sum \mu(x)_{100\%} m(x)$$

Blended aggregates

Blended aggregates

 $\mu = a/2 + c/2$?

Conclusions

WORLD ROAD

- Wehner-Schulze machine can be used to determine likely performance of asphalt when used in the surface course
- Aggregates can be blended with reasonably predictable results

SIMULATIVE POLISHING IN THE LABORATORY

Alan Dunford, <u>Helen Viner</u>, Peter Roe (TRL) Louise Caudwell (Highways Agency)