

### THE 2008 OHIO FRICTION STUDY

OR

RELATIONSHIP BETWEEN SKID RESISTANCE NUMBERS MEASURED WITH RIBBED AND SMOOTH TIRE AND WET-ACCIDENT LOCATIONS

**Presented by:** 

Kelly L. Smith, *Applied Pavement Technology Inc. (APTech)* Roger M. Larson, *Retired (formerly APTech and FHWA)* 

### 2008 Ohio Friction Study

#### **APTech Staff**

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- Roger Larson
- Todd Hoerner
- Kurt Smith
- Angela Wolters

#### **ODOT Liaisons**

- Andrew Williams
- Roger Green
- Brian L. Schleppi
- Thad Tibbles
- Valerie Webb

### **Ohio Safety Efforts**

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- Developed base crash rates for intersections and freeways to help identify those with higher-than-average rates
- Developed crash reduction factors for various countermeasures
- Implemented a significant road safety audit (RSA) program
- Undertaken major research on friction qualities of various aggregates
- Participated in FHWA's Highway Safety Information System (HSIS)
- Consistently reduced highway fatality rates, as well as the number of fatalities.

### **Ohio 2006 Safety Goals**

## Refine, refocus and respond to high crash locations

- Reduce crash frequency by 10% by 2015
- Reduce rear-end crashes by 25% by 2015
- Reduce state fatality rate to 1.0 fatality per 100 MVMT by 2008
- Reduce annual fatalities to 1100 by 2008

### **Research Objectives**

- Determine if a correlation exists between locked-wheel friction (FN) and wet pavement crashes and, if so:
  - which test tire (ribbed or smooth) is more correlated.
  - what the desirable or target FN values should be for different site categories / friction demand categories.
- Develop improved guidance on use of ribbed versus smooth tires and provide recommendations regarding minimum friction numbers for each type.

### **Research Approach**

- Task 1. Literature Review
- Task 2. Design Experiment
- Task 3. Collect Data
- Task 4. Develop Correlations
- Task 5. Recommend Friction Numbers
- Task 6. Final Report

## Task 1. Literature Review Conclusions

WORLD ROAD

- Friction/texture is an important surrogate for safety.
- Greater attention to engineering safer roads can potentially reduce fatalities and serious injuries by a considerable amount.

## Task 2. Design ExperimentSite Selection, Crash and Inventory Data

- 90 sites selected covering three categories
  - congested freeways: 30
  - signalized intersections: 30
  - unsignalized intersections: 30
- For each category,
  - low wet/total crash ratio (0.15): 10
  - medium ratio (0.15 to 0.35): 10
  - high ratio (>0.35): 10
- Representation across Districts, pavement types

### Task 3. Collect/Compile Data

• ODOT provided:

WORLD ROAD

- Comprehensive inventory and pavement condition data.
- Crash data for 2003-2005.
- Field testing by ODOT in summer/fall of 2007.
- At each of the 90 selected sites:
  - Friction tests at 40 mph and one other speed (20 mph for intersections, 60 mph for freeways) with both ribbed and smooth tire (using two ODOT locked-wheel friction trailers)
  - Macrotexture measurements using a high-speed laser profiler (85 of 90 sites) (MPD later converted to MTD)
- Develop analysis database (spreadsheet)



### Task 4. Develop Correlations Data Analysis

 Develop plots of friction and texture statistics versus crash statistics for the 90 sites.

#### **Independent Variable**

• FN40R<sub>avg</sub>

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- FN40R<sub>min</sub>
- FN40S<sub>avg</sub>
- FN40S<sub>min</sub>
- FN20R<sub>avg</sub> or FN60R<sub>avg</sub>
- FN20R<sub>min</sub> or FN60R<sub>min</sub>
- MTD<sub>avg</sub>
- MTD<sub>min</sub>



#### Dependent Variable

- Total crashes
- Wet/total crash ratio
- Rear-end crash rate

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

### Task 4. Develop Correlations Example Analysis Plot



WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

## Task 4. Develop CorrelationsExample Cumulative % Crashes Plot

Cumulative % of All Crashes (in Test Direction) Observed on Congested Freeways vs. FN40 for Ribbed and Smooth Tires



WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

### Task 5. Recommend Friction Numbers Cumulative % Crashes vs. FN Results

| % of<br>Total<br>Crashes | Congested Freeways   |                      | Signalized<br>Intersections |                      | Unsignalized<br>Intersections |                      |
|--------------------------|----------------------|----------------------|-----------------------------|----------------------|-------------------------------|----------------------|
|                          | FN40S <sub>avg</sub> | FN40R <sub>avg</sub> | FN40S <sub>avg</sub>        | FN40R <sub>avg</sub> | FN40S <sub>avg</sub>          | FN40R <sub>avg</sub> |
| 90                       | < 30                 | < 42                 | < 29                        | < 42                 | < 40                          | < 50                 |
| 85                       | < 29                 | < 40                 | < 27                        | < 39                 | < 37                          | < 47                 |
| 50                       | < 26                 | < 34                 | < 21                        | < 30                 | < 29                          | < 39                 |
| 15                       | < 23                 | < 33                 | < 14                        | < 27                 | < 24                          | < 32                 |
| 10                       | < 22                 | < 32                 | < 13                        | < 17                 | < 23                          | < 26                 |

### Task 6. Final Report Key Findings

VORLD ROA

- No single variable (ribbed tire, smooth tire, macrotexture) correlates highly with crashes for each site category
- FN40R<sub>avg</sub>/FN40R<sub>min</sub> better correlated than FN40S<sub>avg</sub>/FN40S<sub>min</sub>
- FN<sub>min</sub> quite consistent and usually ~2 percentage points below FN<sub>avg</sub>
- For congested freeways, rear-end crash rate drops significantly at MTD ~1.0 to 1.2 mm

# Task 6. Final ReportKey Recommendations

WORLD ROAD

- Continue use of FN40R
- Use New York SKARP approach for setting investigatory and intervention levels
  - 3-prong check of wet/total crash ratio, total crashes (annual), and friction
- Supplement with macrotexture check
- Establish levels for 3-5 site categories (per AASHTO Guide for Pavement Friction)



### Thank You!!

MONDIALE DE LA ROUT

Kelly Smith, Sr. Engineer **Applied Pavement Technology, Inc.** klsmith@appliedpavement.com **Roger M. Larson, Retired Applied Pavement Technology, Inc.** rlarson@appliedpavement.com