Virginia / September 19-22, 2012 osium on pavement surface characteristics

EVALUATION OF LOW-COST SAFETY IMPROVEMENTS POOLED FUND STUDY (ELCSI-PFS)

PAVEMENT SAFETY PERFORMANCE

THE

TRANSTEC GROUP

Persaud & Lyon INC.

Roya Amjadi, FHWA, TFHRC Jim Sherwood, FHWA, TFHRC

U.S.Department of Transportation Federal Highway Administration

Presentation Objectives

Why safety is important

WORLD ROAD

- How FHWA, TFHRC, ELCSI-PFS is addressing safety
 - TFHRC, Pavement Safety Performance study
 - Type of pavements
 - Data collection and analysis
 - o Study products
 - Other related studies
 - o Every Day Counts 2- HFST
 - Future studies

Highway Crash Fatalities

National Highway Transportation Safety Adminstration 2012 Report 694,288 Highway Fatalities for Period of 1994 to 2010

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Deaths: Leading Causes for 2008 CDC, National Vital Statistics, Vol. 60, No. 6, 2012

Table C. Deaths and percentage of total deaths for the 10 leading causes of death: United States, 2007 and 2008

		<mark>2008</mark>		<mark>2007</mark>	
Cause of death (based on ICD-10, 2004)	Rank ¹	Deaths	Percent of total deaths	Deaths	Percent of total deaths
All causes		2,471,984	100.0	2,423,712	100.0
Diseases of heart	1	616,828	25.0	616,067	25.4
Malignant neoplasms	2	565,469	22.9	562,875	23.2
Chronic lower respiratory diseases	3	141,090	5.7	127,924	5.3
Cerebrovascular diseases	4	134,148	5.4	135,952	5.6
Accidents (unintentional injuries)	5	121,902	4.9	123,706	<u>5.1</u>
Alzheimer's disease	6	82,435	3.3	74,632	3.1
Diabetes mellitus	7	70,553	2.9	71,382	29
Influenza and pneumonia	8	56,284	23	52,717	22
Nephritis, nephrotic syndrome and					
nephrosis	9	48,237	2.0	46,448	1.9
Intentional self-harm (suicide)	10	36 ,035	1.5	34,598	1.4

Started 2005 and continue to 2017 and beyond

Often state DOTs and other Transportation agencies are reluctant for investing in building safety strategies without scientific evidence that demonstrates effectiveness

- Evaluates unproven low cost (< \$100k/site) safety improvements and determines reliable and scientific measure of strategy effectiveness in improving safety
- Using Empirical Bayes statistical methodology
- Crash Modification Factors (CMFs) are developed by conducting before/after safety evaluations using crash, road, and other data collected from the sites where improvements were made.

CMF = 0.85

CMF = 1.11

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Quantifying Safety Performance

- CMFs are estimate of the safety effectiveness for a given strategy
 - CMF < 1.0 indicates a reduction in crashes
 - CMF > 1.0 indicates an increase in crashes
 - CMF = 1.0 indicates no change in crashes

29 States in the Pool

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Broad base has helped to advance safety

ELCSI-PFS

- Currently, ELCSI-PFS has 7 phases and has evaluated or in the process of evaluating over 15 Strategies
- Numerous states contribute data from sites that they have installed new and innovative safety improvements
- Numerous states build new and innovative safety improvements for the ELCSI-PFS evaluations
- Phases III and V of the ELCSI-PFS were build-toevaluate phases.

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

ELCSI-PFS, Phase VI Objectives Innovative Pavement Safety Research

- Evaluate the effectiveness of <u>low-cost</u> pavement improvements in reducing crashes for various pavement types (concrete and asphalt.)
- Use rigorous statistical analysis of crash, pavement and relevant data to:
 - 1. Develop Crash Modification Factors (CMFs)
 - 2. Provide Benefit/Cost ratios.
 - 3. Provide recommendations and guidance for various improvements based on monitoring and evaluation the performance of various pavement surface treatments.

- Treatments applied to existing pavements that effectively changed the surface properties (texture, friction, smoothness, noise, etc.)
- Pavement preservation to restore/enhance friction, smoothness, etc.
- Other pavement treatments that are considered:
 - Curves
 - Cross-slope or superelevation correction
 - Spot pavement treatments for safety purposes

Asphalt Pavement

Open Graded Friction Course

SURF 2012

Thin Overlay

SURF 2012

Asphalt Pavement

Chip Seal / Seal Coat

Low-Cost Pavement Improvements

Asphalt Pavement

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Shotblasting/Abrading

Micromilling

Concrete Pavement

SURF 2012

Shotblasting/Abrading

Ultrathin Cementitious Overlay

Concrete Pavement

Diamond Grinding

Grooving "Next Generation Diamond Grinding"

SURF 2012

Asphalt / Concrete Pavement

Ultrathin Bonded Wearing Course

SURF 2012

Asphalt / Concrete Pavement

Microsurfacing / Slurry Seal

SURF 2012

SURF 2012

Asphalt / Concrete Pavement

High Friction Surfacing

Data Collection

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Criteria for Candidate Sites

- Treatment improvements are commonly used in the State (i.e., non-experimental unless substantial mileage)
- Minimum of 3 years of pre-treatment and posttreatment crash data (i.e., 2008 or earlier)
- Minimum ~8-10 treatment sites in the State
- Availability of Reference Sites
- Data Formats
 - "Raw" data format preferred

Data Collection

Crash and Roadway Data

Crash Data	 Number of crashes Location type (intersection, non-intersection etc.) Crash type (run-off-road, sideswipe etc.) Crash classification (PDO, Injury, Fatal) Vehicle type Pavement conditions Ambient conditions Reported driver action Direction of travel Reference location (milepost) Other factors affecting crash classification (alcohol, seat belt use, etc.)
Roadway and Traffic Data	 Roadway classification (rural, urban, Interstate, non-Interstate) Traffic volume and directional/lane distribution Number of lanes Median type Geometrics (grade, curvature, superelevation, cross-slope) Shoulder information Roadside features Safety devices/features (striping, signage, guardrails, etc.)

Data Collection

Pavement and Site Data

Pavement File Data	 Original/Existing pavement type (pre-treatment) Original/Existing pavement construction dates Rationale for applying surface treatment (e.g., pavement preservation or friction enhancement) Pavement materials for original/existing pavement Surface treatment strategy type Construction dates for treatment strategy Construction methods and equipment used for treatment strategy Length of treatment strategy section Material properties for treatment strategy (includes, but is not limited to: binder type/properties, aggregate properties Pavement Condition (rutting, polished surface, etc.) Skid Resistance Measurement (SRV and test type)
Climatic Data	 Average temperatures (by month) Average rainfall (by month) Crash-specific weather (if available)

Data Collection Update

- Most Common Treatments (in order of data availability)
 - Asphalt Pavement
 - Thin Overlays
 - Chip Seals/Seal Coats (single and double layer)
 - OGFC

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- Ultrathin Bonded Wearing Course (e.g., Novachip)
- Microsurfacing and Slurry Seals
- High Friction Surface Treatment (HFST)
- Concrete Pavement
 - Diamond Grinding
 - Microsurfacing
 - High Friction Surfacing

Data Collection Update

Treatment Strategy Needs

- Asphalt Pavement
 - OGFC

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- HFST
- Slurry Seal
- Shotblasting/Skidabrading
- Micromilling
- Concrete Pavement Treatments (AII)
- Geographic Diversity of Treatments (More States!)
- Reference Sites

Data Collection Update

- Data needs for selected treatments/sites
 - More detailed site information (terrain, geometrics, shoulders, median information, etc.)
 - Information on changes to site during B/A periods
 - More detailed treatment material information
 - Skid Data

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- Construction Information (cost info, lessons learned, etc.)
- Treatment Performance Information

Some Evaluation Details

- Before and After Period Data Collection
- Verify Installation Dates
- Stage Risk Assessment and Quarterly Conference Calls
- Select Suitable Reference Sites
- Document Changes in the B/A Periods
- Conduct Sample Size Estimation
- Develop Final Study Design
- Conduct analysis
- Benefit Cost Ratio Analysis
- Compilation of States' Experience for Strategy Installations
- Final Report (spring of 2014)

Other TFHRC Research

- Development and Demonstration of AASHTO Guide for Pavement Friction:
 - 1. Phase I identified best Continuous Friction Measurement Equipment to save lives (30 % slip ratio) with smooth tire (Jim Sherwood, TFHRC)
 - 2. Phase II Demonstrate in four States, compare to current equipment (Andy Mergenmeier, Resource Center)
- Asphalt Research Consortium "Mixture Design to Enhance Safety and Reduce Noise"
 The University of Wisconsin and University of Pisa, Italy. (Eric Weaver, TFHRC)

Every Day Counts (EDC2) High Friction Surface Treatments

Approach for this EDC2, HFST draft initiative centers on developing the following four proficiencies and procedures:

- Awareness
- Target audience proficiency
- Standard screening procedures
- Site selection guides/tools.

The deployment effort will concentrate on:

- o **Training**
- Outreach: communication and marketing
- Knowledge and Information Exchange.

Near Future Studies

- FHWA, TFHRC is anticipating start (10/12) of its new study "Development of Crash Modification Factors" (DCMF) that will evaluate low to high cost safety improvements that includes pavement.
- TFHRC, Offices of Safety R&D and Infrastructure R&D will conduct in-house research using data received for the ELCSI-PFS, Phase VI.

Virginia / September 19-22, 2012 posium on pavement surface characteristics

FHWA - Pavement Safety Performance

Thank You!

Roya Amjadi - Safety R&D Jim Sherwood - Pavements R&D

U.S.Department of Transportation Federal Highway Administration

Persau