USE AND LIMITATIONS OF CRASH DATA IN DETERMINING THE PRIORITY FOR TREATING SITES WITH LOW SKID RESISTANCE

Helen Viner, Fiona Coyle, Stuart Brittain (TRL)
Louise Caudwell (Highways Agency)
Contents

• Overview of UK skid resistance policy
• The site investigation dilemma
• Development of TRL accident model
• Results of sensitivity analysis
• Planned implementation
UK skid resistance policy

- Based on annual surveys using a continuous, side-force measurement device (SCRIM)
- Data are post-processed to smooth seasonal variation
- Values are compared with the skid resistance level set by the highway engineer (Investigatory Level)
Site categories and ILs

<table>
<thead>
<tr>
<th>Site Category</th>
<th>IL for CSC data (SCRIM data speed corrected to 50km/h and seasonally corrected)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>Motorway</td>
<td></td>
</tr>
<tr>
<td>Dual carriageway non-event</td>
<td></td>
</tr>
<tr>
<td>Single carriageway non-event</td>
<td></td>
</tr>
<tr>
<td>Approaches to junctions</td>
<td></td>
</tr>
<tr>
<td>Approaches to pedestrian crossings</td>
<td></td>
</tr>
<tr>
<td>Roundabout</td>
<td></td>
</tr>
<tr>
<td>Gradient 5-10%</td>
<td></td>
</tr>
<tr>
<td>Gradient >10%</td>
<td></td>
</tr>
<tr>
<td>Bend radius <500m – dual c/way</td>
<td></td>
</tr>
<tr>
<td>Bend radius <500m – dual c/way</td>
<td></td>
</tr>
</tbody>
</table>
Intervention vs. investigation

- An intervention threshold would require treatment if the skid resistance falls below a specified level
- Advantage: simplicity
- Disadvantages:
 - Requires adequate maintenance budget to be assigned to complete all treatments
 - Does not cater for the wide variation in accident risk that is observed
 - And the relatively weak trend between skid resistance and accident risk
Risk varies within each site category

Low skid resistance
HIGH accident risk

Skid resistance >IL
HIGH accident risk

Low skid resistance
LOW accident risk

Accident risk for single carriageway trunk roads
Site investigation process

- Tabulate skid resistance & texture depth data
- Review crash locations
- Site visit
- Are crash locations linked to condition?
The site investigation dilemma -1

- We want to treat the sites most likely to deliver a safety benefit
- … while monitoring those that are lower risk
- A significant number of sites typically require investigation and possibly treatment
- This takes a lot of staff resource to do properly
The site investigation dilemma -2

- The two main indicators of risk both have limitations
 - Surface condition (skid resistance) explains a relatively low proportion of the overall risk
 - Values fluctuate due to seasonal variation (UK)
 - Crash history is not reliable at 95% confidence levels
- They prioritise sites in a different order
- We need a simple, efficient method of assessing priorities
Crash data are only part of the picture

- Accident numbers (for an individual site) are low
- So, statistical confidence is low
Objectives of the accident model

- To provide a method for rating the loss of skid resistance, history of crashes and the nature of the site during the site investigation

- Which is:
 - Consistent
 - Easy to apply
Methodology

- Method developed to combine the different sources of information:
 - It predicts the number of future accidents
 - Estimates the reduction that would result from improving skid resistance
 - Translates this to accident cost saved
 - Rank sites in order of relative cost saving
Overview of accident model

- SCRIM survey data
- Site locations
 - Site category
 - Current skid resistance
 - Improved skid resistance
 - Past accidents
 - Number of years

- Past v future accident algorithm
- Future accident saving

- Accident rate v skid resistance algorithm

- Accident cost & Severity data

- Rating
Prediction of future accident risk

- To what extent is past accident risk a good guide to future risk?
- This will depend on the extent to which accidents occur randomly or systematically
Prediction of future accident risk

- Analysis of crash pattern on English trunk road network over 2 periods
 - “Past” (1999-2002)
 - “Future” (2003-2006)
- Database divided into continuous lengths with consistent site category
 - Motorway - 500m
 - Dual and single carriageway non-event - 200m
 - Event categories - as defined in PMS
Prediction of future accident risk

<table>
<thead>
<tr>
<th>% analysis lengths</th>
<th>Future Accidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past Accidents</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>47.3</td>
</tr>
<tr>
<td>1</td>
<td>31.9</td>
</tr>
<tr>
<td>2</td>
<td>22.5</td>
</tr>
<tr>
<td>3</td>
<td>16.8</td>
</tr>
<tr>
<td>4</td>
<td>8.8</td>
</tr>
<tr>
<td>5</td>
<td>7.3</td>
</tr>
<tr>
<td>>5</td>
<td>2.6</td>
</tr>
<tr>
<td>N</td>
<td>2088</td>
</tr>
</tbody>
</table>

Results for mainline motorway lengths
Prediction of future accident risk

<table>
<thead>
<tr>
<th>% analysis lengths</th>
<th>Past Accidents</th>
<th>Less than past accidents</th>
<th>Same as past accidents</th>
<th>More than past accidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>47.3</td>
<td>52.7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>31.9</td>
<td>30.9</td>
<td>37.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50.5</td>
<td>21.1</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>60.7</td>
<td>15.7</td>
<td>23.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>65.5</td>
<td>11.4</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>64.0</td>
<td>11.2</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>>5</td>
<td>56.5</td>
<td>43.4</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Results for mainline motorway lengths
General relationships for future risk

\[y = 0.349x + 0.0005 \]
\[y = 0.31x + 0.0004 \]
\[y = 0.315x + 0.0005 \]
Benefits from improving skid resistance

- Previous work has analysed relationship between skid resistance and accident risk
- Relationship depends on site category
- For some categories, relationships not robust due to lack of data
Data combined into 3 categories

\[y = 1.964x - 0.933 \]
\[y = 2.217x - 2.469 \]
\[y = 3.108x - 1.547 \]
Benefits from improving skid resistance

• Assumed that skid resistance improved from current level to 0.05 above the IL

• Relationships used to estimate saving in accidents

• Converted into economic saving
 • Lack of relationship between skid resistance and accident severities
 • Determined typical distribution of accident severity (fatal/serious/slight for each site category)

• Hence, determined overall accident rating
Refined from sensitivity analysis

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Site category</th>
<th>Current skid resistance</th>
<th>Ideal skid resistance</th>
<th>Difference</th>
<th>Past Accidents</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>G</td>
<td>0.3</td>
<td>0.55</td>
<td>0.25</td>
<td>1</td>
<td>93.8</td>
</tr>
<tr>
<td>94</td>
<td>R</td>
<td>0.4</td>
<td>0.55</td>
<td>0.15</td>
<td>2</td>
<td>88.7</td>
</tr>
<tr>
<td>107</td>
<td>S1</td>
<td>0.3</td>
<td>0.55</td>
<td>0.25</td>
<td>1</td>
<td>86.4</td>
</tr>
<tr>
<td>113</td>
<td>S1</td>
<td>0.5</td>
<td>0.55</td>
<td>0.05</td>
<td>3</td>
<td>86.3</td>
</tr>
<tr>
<td>34</td>
<td>C</td>
<td>0.4</td>
<td>0.45</td>
<td>0.05</td>
<td>3</td>
<td>82.4</td>
</tr>
<tr>
<td>60</td>
<td>K</td>
<td>0.2</td>
<td>0.55</td>
<td>0.35</td>
<td>1</td>
<td>81.2</td>
</tr>
<tr>
<td>75</td>
<td>Q</td>
<td>0.3</td>
<td>0.55</td>
<td>0.25</td>
<td>1</td>
<td>79.3</td>
</tr>
<tr>
<td>62</td>
<td>K</td>
<td>0.4</td>
<td>0.55</td>
<td>0.15</td>
<td>2</td>
<td>78.5</td>
</tr>
<tr>
<td>81</td>
<td>Q</td>
<td>0.5</td>
<td>0.55</td>
<td>0.05</td>
<td>3</td>
<td>71.2</td>
</tr>
<tr>
<td>91</td>
<td>R</td>
<td>0.3</td>
<td>0.55</td>
<td>0.25</td>
<td>1</td>
<td>67.2</td>
</tr>
<tr>
<td>122</td>
<td>S2</td>
<td>0.4</td>
<td>0.55</td>
<td>0.15</td>
<td>1</td>
<td>66.0</td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>0.3</td>
<td>0.45</td>
<td>0.15</td>
<td>2</td>
<td>60.4</td>
</tr>
</tbody>
</table>

- 132 hypothetical combinations of site category, skid resistance and accident history
Refined from sensitivity analysis

- Sites with low skid resistance but no previous history receive low rankings
 - (In spite of using power relationship for skid vs. accident risk)
- Economic sense?
- But not consistent with duty of care
- Additional weighting introduced based on extent of deficiency
Summary and implementation

- Skid resistance policy can be made more effective if you can target sites likely to deliver safety benefits
- Skid resistance and accident data are both relevant to this, and both have limitations
- A method has been developed that balances the priority of each
- Provides a simple and consistent initial ranking
- Method has been incorporated into a forthcoming update to UK skid resistance standard
USE AND LIMITATIONS OF CRASH DATA
IN DETERMINING THE PRIORITY FOR TREATING SITES WITH LOW SKID RESISTANCE

Helen Viner, Fiona Coyle, Stuart Brittain (TRL)
Louise Caudwell (Highways Agency)