

A MECHANISTIC APPROACH FOR PAVEMENT VEHICLE INTERACTION IN LCA

Mehdi Akbarian (MIT)

SURF 2012

Introduction

Why Bother: Transportation Accounts for 20% of US CO2 Emissions

Transpc@2tEmissionrbipSectory Type

SURF 2012

SURF 2012

Pavement-Vehicle Interaction

SURF 2012

Pavement Roughness*

* Zabaar and Chatti (2010) Calibration of HDM-4 Models for Estimating the Effect of Pavement Roughness on Fuel Consumption for U.S. Conditions

WORLD ROAD

DE LA ROUTE

Literature: Empirical Studies on Pavement Deflection

Empirical Database:

- High uncertainty
- High variability
- Question of objectivity
- Binary material view:
 - Asphalt vs. concrete
- No structural consideration

Need:

- Model is missing to relate fuel consumption to:

- Deflection
- Structure
- Material

SURF 2012

PVI Deflection Model

Research Problem:

• Evaluate, in first order, the mechanics behind pavement vehicle interaction

SURF 2012

Research Goal:

- Create a model that relates fuel consumption to:
 - Deflection
 - Structure
 - Material properties

Simplest model:

- Bernoulli Euler beam on viscoelastic foundation
- Calibrate model parameters
- Validate with experimental data

Bernoulli Euler beam on viscoelastic foundation

$$EI\frac{\partial^{4}y}{\partial x^{4}} + m\frac{\partial^{2}y}{\partial t^{2}} + c\frac{\partial y}{\partial t} + ky = q(x,t) \quad [eq.1]$$

$$Moving \text{ coordinate system: } \eta = x - Vt \quad [eq.2]$$

$$EI\frac{\partial^{4}y}{\partial \eta^{4}} + m\left(\frac{\partial^{2}y}{\partial t^{2}} - 2V\frac{\partial^{2}y}{\partial t\partial \eta} + V^{2}\frac{\partial^{2}y}{\partial \eta^{2}}\right) + c(\frac{\partial y}{\partial t} - V\frac{\partial y}{\partial \eta}) + ky = q(\eta,t) \quad [eq.3]$$

 $\pmb{\xi} \ (\text{and} \ \pmb{\Omega}^{\ *})$ are tranformed fields of $\pmb{\eta}$ and \pmb{t}

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

$$y(\eta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{Q(\xi)}{EI\xi^4 - mV^2\xi^2 + k(1+2i\zeta)} e^{i\xi\eta} d\xi$$

$$Q(\xi) = q \int_{-a/2}^{a/2} e^{-i\xi\eta} d\eta \quad [eq. 5]$$
[eq. 4]

(* in the case of periodic load, not considered in what follows)

Input: E: Elastic Modulus of Top Layer h: Thickness of Top Layer k: Elastic Modulus of Subgrade ζ: Damping Ratio m: Mass of beam per unit length

Output $y(\eta)$: Deflection

Model Parameter Study

Inputs:

WORLD ROAD

- E: Top layer modulus
- *h:* Top layer thickness
- k: Substrate modulus
- M: Vehicle mass

$$\begin{split} IFC &\sim GR \times M \times \mathrm{g}: \mathrm{Gradient} \ \mathrm{Force} \\ GR &\sim \frac{w}{L_S} \\ w &\sim M^1 \ E^{-1/_4} \ k^{-3/_4} \ h^{-3/_4} \\ L_S &\sim E^{1/_4} \ k^{-1/_4} \ h^{3/_4} \end{split}$$

$$IFC \sim M^2 \times E^{-1/2} k^{-1/2} h^{-3/2}$$

* Mechanistic Approach to Pavement-Vehicle Interaction and Its Impact in LCA - *Journal of the Transportation Research Board*, 2012.

Calibration – validation: FHWA DATA

FWD Time Histories:

- 1. Calibration: Arrival time of signal
- 2. Validation: Maximum deflection at offsets

Role of Damping

Effect of damping:

- 1- Distance lag Δ due to increase in damping.
- 2- Decrease in maximum deflection.
- 3- But, second-order effect.

SURF 2012

LTPP Monitored Sections

Data used:

- Top layer modulus *E*
- Subgrade modulus *k*
- Top layer thickness h
- Loading condition q
- Traffic Volume (AADT, AADTT)

SURF 2012

Monte-Carlo Procedure

SURF 2012

Deflection Induced Fuel Consumption

Trucks: Cars: 10 1 Ι Ι Change in Fuel Consumption (liters/100km) Change in Fuel Consumption (liters/100km) 1 0.1 0.1 0.01 0.01 0.001 NRC III (100 kph) NRC III (Full 60 kph) NRC III (Empty 60 kph) NPC (80 kph) NRC II (100 kph) NRC II (60 kph) MIT (100 kph) Michigan SU 0.001 NRC III (100 kph) De Graaff (90 kph) U Texas (60 kph) MIT (100 kph)

SURF 2012

Report:

*Akbarian M., Ulm J-F. 2012. Model Based Pavement-Vehicle Interaction Simulation for Life Cycle Assessment of Pavements. Concrete Sustainability Hub. MIT

Use in a LCA

50 yr GHG Emissions of Two Pavement Scenarios Relative to a "Flat" Pavement

SURF 2012

*Embodied GWP for Canadian High Volume Traffic Scenario : Athena (2006)

SURF 2012

Conclusion

Developed:

- Relationship between material and structural pavement properties with PVI
- Calibration Validation of model
- Model provides realistic estimates of FC for vehicles and current trends

Future Work:

- More accurate pavement model
- Realistic vehicle model
- Network application

Use in a LCA – with roughness

SURF 2012

Embodied GWP for Canadian High Volume Traffic Scenario : Athena (2006) IRI design criterion = 160 in/mile