A MECHANISTIC APPROACH FOR PAVEMENT VEHICLE INTERACTION IN LCA

Mehdi Akbarian (MIT)
Outline

Introduction
Pavement-Vehicle Interaction
Model
Results: LTPP Network Analysis
Conclusion and Future Work
Why Bother: Transportation Accounts for 20% of US CO2 Emissions

LCA & LCCA Boundaries

Pavement Vehicle Interaction: 72%

CO2 Emission by Sector Type

- Transportation: 33%
- Residential: 22%
- Industrial: 26%
- Commercial: 19%
- Agriculture: 7%
- Manufacturing: 5%
- Mining & Quarrying: 3%
- Boats & Ships: 3%
- Aviation: 3%
- Other: 1%
Outline

Introduction

Pavement-Vehicle Interaction Model

Results: LTPP Network Analysis

Conclusion and Future Work
Pavement-Vehicle Interaction

Pavement Roughness*

Structure and Material

Pavement Deflection

Empirical Database:
- High uncertainty
- High variability
- Question of objectivity
- Binary material view:
 - Asphalt vs. concrete
 - No structural consideration

Need:
- Model is missing to relate fuel consumption to:
 - Deflection
 - Structure
 - Material
Outline

Introduction
Pavement-Vehicle Interaction
Model
Results: LTPP Network Analysis
Conclusion and Future Work
PVI Deflection Model

Research Problem:
- Evaluate, in first order, the mechanics behind pavement vehicle interaction

Research Goal:
- Create a model that relates fuel consumption to:
 - Deflection
 - Structure
 - Material properties

Simplest model:
- Bernoulli Euler beam on viscoelastic foundation
- Calibrate model parameters
- Validate with experimental data
Bernoulli Euler beam on viscoelastic foundation

\[EI \frac{\partial^4 y}{\partial x^4} + m \frac{\partial^2 y}{\partial t^2} + c \frac{\partial y}{\partial t} + ky = q(x, t) \quad [eq. 1] \]

Moving coordinate system: \(\eta = x - Vt \) \[eq. 2 \]

\[EI \frac{\partial^4 y}{\partial \eta^4} + m \left(\frac{\partial^2 y}{\partial t^2} - 2V \frac{\partial^2 y}{\partial t \partial \eta} + V^2 \frac{\partial^2 y}{\partial \eta^2} \right) + c \left(\frac{\partial y}{\partial t} - V \frac{\partial y}{\partial \eta} \right) + ky = q(\eta, t) \quad [eq. 3] \]

\(\xi \) (and \(\Omega^* \)) are transformed fields of \(\eta \) and \(t \)

\[
y(\eta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{Q(\xi)}{EI\xi^4 - mV^2\xi^2 + k(1 + 2i\zeta)} e^{i\xi\eta} d\xi
\]

[eq. 4]

\[
Q(\xi) = q \int_{-a/2}^{a/2} e^{-i\xi \eta} d\eta \quad [eq. 5]
\]

(* in the case of periodic load, not considered in what follows)

Input:
- \(E \): Elastic Modulus of Top Layer
- \(h \): Thickness of Top Layer
- \(k \): Elastic Modulus of Subgrade
- \(\zeta \): Damping Ratio
- \(m \): Mass of beam per unit length

Output
- \(y(\eta) \): Deflection
Model Parameter Study

Inputs:

- E: Top layer modulus
- h: Top layer thickness
- k: Substrate modulus
- M: Vehicle mass

\[IFC \sim GR \times M \times g : \text{Gradient Force} \]

\[GR \sim \frac{w}{L_s} \]

\[w \sim M^1 E^{-1/4} k^{-3/4} h^{-3/4} \]

\[L_s \sim E^{1/4} k^{-1/4} h^{3/4} \]

\[IFC \sim M^2 \times E^{-1/2} k^{-1/2} h^{-3/2} \]

Calibration – validation: FHWA DATA

FWD Time Histories:
1. Calibration: Arrival time of signal
2. Validation: Maximum deflection at offsets
Role of Damping

Effect of damping:
1- Distance lag Δ due to increase in damping.
2- Decrease in maximum deflection.
3- But, second-order effect.

Effect of distance lag Δ:
- Maximum deflection behind the load
- Wheels are on a constant slope
Outline

Introduction
Pavement-Vehicle Interaction Model
Results: LTPP Network Analysis
Conclusion and Future Work
LTPP Monitored Sections

Total of 5643 sections: 1079 rigid, 4564 flexible

Data used:
- Top layer modulus E
- Subgrade modulus k
- Top layer thickness h
- Loading condition q
- Traffic Volume (AADT, AADTT)
Monte-Carlo Procedure

Sample Data (log space)
Calculate Fuel Consumption

Check convergence
inputs \((\mu, \sigma) \) \(\approx \) \((\mu, \sigma) \)

PVI Deflection Fuel Consumption

E (\(\mu, \sigma \))

k (\(\mu, \sigma \))

h (\(\mu, \sigma \))

q (\(\mu, \sigma \))
Deflection Induced Fuel Consumption

Trucks:

Cars:

Report:
Use in a LCA

50 yr GHG Emissions of Two Pavement Scenarios Relative to a “Flat” Pavement

Total IFC \sim E^{-1/2} k^{-1/2} h^{-3/2} \sum_i (N_i W_i^2)

Outline

Introduction
Pavement-Vehicle Interaction Model
Results: LTPP Network Analysis
Conclusion and Future Work
Conclusion

Developed:
- Relationship between material and structural pavement properties with PVI
- Calibration – Validation of model
- Model provides realistic estimates of FC for vehicles and current trends

Future Work:
- More accurate pavement model
- Realistic vehicle model
- Network application
Use in a LCA – with roughness

IRI design criterion = 160 in/mile