ABOUT THE ROLLING RESISTANCE (RR) TRAILER AND PARAMETERS INFLUENCING RR

Anneleen Bergiers BRRC, Belgium a.bergiers@brrc.be

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Luc GoubertCedric VuyeBRRC, BelgiumArtesis, BelgiumI.goubert@brrc.becedric.vuye@artesis.be

industriële wetenschappen

Overview

MONDIALE DE LA ROUT

- 1. Introduction
- 2. Trailer measurements
- 3. Coast down measurements
- 4. One-third-octave band texture levels
- 5. Conclusions

Overview

- 1. Introduction
- 2. Trailer measurements
- 3. Coast down measurements
- 4. One-third-octave band texture levels
- 5. Conclusions

1. Introduction

```
Rolling resistance (RR) \uparrow
Energy consumption \uparrow
CO<sub>2</sub> emission \uparrow
```

Influence of road surface?

Rolling Resistance Coefficient: dimensionless ratio of RR force to wheel load $C_r = F_r / F_z$ where the forces F_r and F_z are magnitudes and not vectors

1. Introduction

Trailer measurements

- Quarter-car with car suspension
- Tyre load 2000 N
- Force R counteracting rolling of wheel causes backward motion over angle θ
- Sensors:

- Inclination θ wheel carrier frame trailer
- Inclination µ frame trailer horizontal plane
- Inclination α trailer towing vehicle static condition
- Tyre temperature: external infrared sensor at sidewall near shoulder tyre
- Speed
- Acceleration

1. Introduction

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Coast down measurements

- Rudimentary measurements
- No specialized measuring equipment
- Each vehicle was coasted with transmission disengaged until standstill
- Distance travelled was measured
- A lot of parameters are still influencing the measurements: e.g. vehicle RR and aerodynamical resistance

1. Introduction

Texture measurements

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Dynamic laser profilometer BRRC:

- 78 kHz sample frequency
- laser beam 0.2 mm diameter
- 40 km/h when measuring in steps of 0.2 mm
- vertical measuring range 64 mm
- 16-bit system
- vertical resolution 1 µm

Overview

- 1. Introduction
- 2. Trailer measurements
- 3. Coast down measurements
- 4. One-third-octave band texture levels
- 5. Conclusions

2. Trailer measurements

Short time repeatability

• 9 test tracks

- 5 days in between
- Temperature correction: $C_r(T) = C_r(T_0) * e^{((T_0 - T)/T_1)}$ where $T_0 = 30 \text{ °C}$, $T_1 = 50 \text{ °C}$ [Descornet]
- All outliers were included in graphs and analyses
- Good repeatability (slope approaches 1)
- Reasonable correlation

2. Trailer measurements

Long time repeatability

• Part I:

- 2 measurement campaigns
- 10 test sections
- 2 different groups of researchers
- 8 11 months
- Good repeatability (slope approaches 1)
- Correlation not so good
- Possible reasons:
 - 2 different groups of researchers, communication errors
 - Wear road surface
 - Calibration errors students

2. Trailer measurements

Long time repeatability

• Part II:

- 2 measurement campaigns
- other test sections (same as short term repeatability)
- same group of researchers
- 3 months
- Repeatability is good (slope of approaches 1)
- Correlation is reasonable

2. Trailer measurements

Tyre load

- loads: 1285 N, 1416 N, 1547 N, 1678 N, 1809 N and 1939 N
- 2 directions of street: east and west
- influence load on RR force is linear
- C_r constant and more or less independent of the load
- applying temperature correction yields better correlation

2. Trailer measurements

Tyre inflation pressure

- 1.2 bar 3.2 bar (in steps of 0.5 bar)
- tyre inflation pressure decrease
 = C_r increase
- 1 bar difference = approx. 0.004 raising or lowering of C_r (15 -20 %)
- tyre inflation pressure very important factor for RR
- tyre inflation pressure increases with temperature -> good warm-up procedure

2. Trailer measurements

Wind shielding

- removable wooden windscreen
- measurements with old and new tyre at 30, 50 and 70 km/h
- eastern wind during measurements with new tyre
- generally C_r higher without windscreen
- windscreen absolutely necessary for measurements, but windscreen all around tyre and to ground level would even be better

2. Trailer measurements

Speed

- measurements with old and new tyre at 30, 50 and 70 km/h with/without windscreen
- generally C_r increases when speed increases (except for one measurement without windscreen)
- more recent research [MIRIAM]: larger windscreen (encapsulating whole tyre) advisable to eliminate wind influence at higher speed

2. Trailer measurements

Tyre type

- old tyre: slick Michelin SB-15/63-14X, about 30 years old
- new tyre: Michelin Energy Saver 195/70 R14 91T
- C_r values new tyre lower than old tyre
- not only road surface important share on RR, also tyre
- well thought selection of tyre can provide lower CO2 emission

old tyre

new tyre

Overview

MONDIALE DE LA ROUT

- 1. Introduction
- 2. Trailer measurements
- 3. Coast down measurements
- 4. One-third-octave band texture levels
- 5. Conclusions

3. Coast down measurements

- Always same driver, fuel tank filled up before start
- Tyre pressure cold condition

- At least 10 km to warm up tyres
- Length test sections 100 to 200 m
- Initial speed 20 km/h vehicle A and 25 km/h vehicle B
- Clutch pedal pushed, coasted from start point until standstill, distance measured
- To eliminate influence slope, measurements in 2 directions >< because of safety on opposite driving lane
- 3 coast down measurements in each direction
- Dry weather conditions and low wind
- Ambient air temperature: 5.6 20.5 °C >< no temperature corrections

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

3. Coast down measurements

	Vehicle A	Vehicle B
Vehicle type	Audi A3 S-Line (2003)	Peugeot 307 (2005)
Vehicle weight (driver included)	1480 kg	1400 kg
Picture of vehicle		
Tyre Inflation	2.5 bar	2.4 bar
Tyre type	Triangle 225/45ZR17	Michelin 205/55R16
Tread depth tyre	6.0 mm	4.8 mm
Picture of tyre		

3. Coast down measurements

Corrrelation between measurements 2 vehicles

SURF 2012

WORLD ROAD

3. Coast down measurements

Corrrelation between coast down and trailer measurements

- 6 test sections in common
- Vehicle B shows good correlation (25 km/h)
- Low correlation vehicle A (20 km/h)
- Explanation:
 - vehicle A less accurate because of lower initial speed?
 - first measurements, operators not yet used to measurement method?

Overview

- 1. Introduction
- 2. Trailer measurements
- 3. Coast down measurements
- 4. One-third-octave band texture levels
- 5. Conclusions

4. One-third-octave band texture levels

Texture measurements (trailer, De Bie – Hofmans)

SURF 2012

4. One-third-octave band texture levels

Texture measurements (coast down, Aerts – Cools)

- Nekkerhal 2
- Steenweg op
- Prinsendreef
- Stijn Streuvelslaan
- —Van Den Nestelaan

SURF 2012

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

4. One-third-octave band texture levels

Overview

MONDIALE DE LA ROUT

- 1. Introduction
- 2. Trailer measurements
- 3. Coast down measurements
- 4. One-third-octave band texture levels
- 5. Conclusions

5. Conclusions

- Long and short time repeatability reasonable
- Influence of load on RR force linear; C_r constant and more or less independent of load
- <u>Tyre inflation pressure</u> large influence; 1 bar difference = approx. 0.004 raising or lowering of C_r (15 - 20 %)
- <u>Wind shielding</u> necessary -> more accurate results at higher speeds

5. Conclusions

- C_r increases slightly when <u>speed</u> increases; more research needed larger windscreen
- Selection of <u>tyre</u> lower CO₂ emission
- <u>Calibration</u> very delicate, high influence
- <u>Rudimentary coast down</u> plausible RR results
- Very good correlations RR <u>megatexture</u> (coast down, Dotsenko-Helsen, Descornet)

Thank you for your attention!

SURF 2012