Financial Consequence-Based Pavement Management System (FCPMS)

National Pavement Management Conference Norfolk, Virginia May 2007 Sohila Bernanian, PE Optimum Pavement, Reno, Nevada

The Message

You can significantly improve pavement condition at your organization without spending more money!

> NDOT fully implemented the "Financial Consequence Based Pavement Management System" that resulted in NDOT having some of the smoothest roads in the country, with no funding increase since 1992.

The Message

NDOT has some of the smoothest roads in the country!

2005 IRI Data	Good	Fair	Poor	
	< 95	95 to 170	> 170	
NHS	95%	5%	0%	
NHS and STP	700/			
Total System	12%	25%	3%	

Outline

> What is FCPMS?
> Why should we use it?
> Who should use it?
> How to implement?
> What are the benefits?

What is it?

Optimizing to the lowest life-cycle cost

rather than

Pavement Condition

Pavement Rate of Deterioration

Why should we use it?

Same level of \$\$\$ funding
 Better roads!!!
 Easy to get management support

Who should use it?

All public agencies who are faced with doing more with less \$\$\$

O Get Administrative Support

It's easy since more \$\$\$\$ is not needed.
 Can improve the entire system over 5 years

Year 1) 20% funding on proactive projects
Year 2) 40% funding on proactive projects
Year 3) 60% funding on proactive projects
Year 4) 80% funding on proactive projects
Year 5) 100% funding on proactive projects

2 Develop an Inventory of the Entire System

Cor	tracts O	rdered	By Rou	te, County Sequence, From Cum	Mile, Last (Contract, Aw	ard Date, Category, I	Funky Clas	35
		Erom	То			Award OR			Eunky
Poute	County	Cum	Cum	Broject Description	Contract	EA Date	Popair	Category	Class
Koute	county	Mile	Mile	r toject Description	contract	LA Dale	Kepaii	Category	01255
SR028	DO	0.00	1.23	From US050 at Spooners to the DO/CC County Line	73237	1/2/2007	3" coldmill, 3" PBS with OG	3	6
SR028	СС	0.00	3.95	From the DO/CC County Line to the CC/WA County Line	73237	1/2/2007	3" coldmill, 3" PBS with OG	3	16
SR028	WA	0.00	4.98	From the CC/WA County Line to East Lakeshore Blvd, also a functional class break	73237	1/2/2007	3" coldmill, 3" PBS with OG	3	6
SR028	WA	4.98	7.96	From East Lakeshore Blvd, also a functional class break, to 2.98 miles North	73105	1/2/2006	3" coldmill, 3" PBS with OG	3	16
SR028	WA	7.96	11.00	From 2.98 miles North of East Lakeshore Blvd to the NV/CA State line	73271	1/2/2006	3" coldmill, 3" PBS with 1" OG	2	16
SR088	DO	0.00	2.31	From the CA/NV State line to 2.31 miles North, the South Urban Limits of Gardnerville	3221	6/30/2004	1" coldmill, 2.5" PBS with OG	3	6
SR088	DO	2.31	4.37	From 2.31 miles North of the CA/NV Stateline to Centerville Lane	3221	6/30/2004	1" coldmill, 2.5" PBS with OG	3	14
SR088	DO	4.37	7.30	From Centerville Lane to Mackland Drive	3221	6/30/2004	2" coldmill, 2.5" PBS with OG	3	14
SR088	DO	7.30	7.87	From Mackland Drive to US395	3027	6/5/2000	4" coldmill, 4" PBS with OG	2	14
SR115	СН	0.00	4.82	Harrigan Road, from Berney Road to Stillwater Road	2447	6/17/1991	2" PBS with chip seal	4	17
SR116	СН	0.00	5.90	Stillwater Road, from the junction with US050 to 0.30 miles East of Hicks Road	2170	10/23/1986	8" RBM, 3" PBS with chip seal	3	7
SR116	СН	5.90	8.97	Stillwater Road, from 0.30 miles East of Hicks Road to 3.37 miles East of Hicks Road	2170	10/23/1986	8" RBM, 3" PBS with chip seal	4	7
SR116	СН	8.97	10.49	From 3.37 miles East of Hicks Road to Stillwater	2170	10/23/1986	8" RBM, 3" PBS with chip seal	5B	7

③ Divide the System into Five Categories

4 Establish Frequency of Pavement Rehabilitation

Prioritization Category	Two Directional Traffic	Frequency of Rehabilitation In Years	Percentage of the System	Reactive Cost Per Year	Proactive Cost Per Year	Difference in Cost
1	CONTROLLED ACCESS asphalt concrete	8 18	19	\$50M	\$30M	\$20M
2	ESAL > 540 OR ADT > 10,000	10	19	\$42M	\$37M	\$5M
3	540 >= ESAL >405 OR 1600 < ADT <= 10,000 + NHS	12	21	\$30M	\$17M	\$13M
4	405 >= ESAL > 270 OR 400 < ADT <= 1600	15	15	\$14M	\$10M	\$4M
5A 5B 5C	280 < ADT <=400 120 < ADT <= 280 ADT <= 120	20 20 20	6 10 9	\$5M	\$5M	\$0M
TOTAL				\$141 M	\$99M	\$42M

Prioritize Projects Based on Rate of Deterioration

*Example

Route Name	Pavement Condition	Rate of Deterioration	Cost of Rehabilitation Today	Cost of Rehabilitation in 2-years	Priority Ranking
I-80	Fair	Rapid	\$10M	\$40M	#1
US-95	Poor	Moderate	\$10M	\$15M	#2
SR-552	Very Poor	Slow	\$10M	\$12M	#3

* When safety is not a major concern.

Select Strategies Based on Life-Cycle Cost!

Life-Cycle cost does not mean complete reconstruction!! (different options including reconstruction should be evaluated)

Need Enough Tools in the Tool Box!

- Cold in Place Recycling
 Hot in Place Recycling
 Full Depth
 - Reclamation
- Crack and Seat of Concrete Pavement Rubblization of concrete pavement

Chip Seal
Flush Seal
Microsurfacing
Slurry Seal

Cold In Place Recycle Train

⑦ Monitor Performance

Monitor the pavement performance and make improvements based on long-term pavement performance.

Conclusions

- Better roads with less \$\$\$ in a very short time
- Easy to get administration support and easy to understand
- Consequences of reactive decisions can easily be quantified
- Improve public perception, reduce user cost, and decrease construction time

Questions?

Sohila Bemanian, PE
sohila@optimumpavement.com
(775) 338-1816

Optimum Pavement, Reno, Nevada