Engineering Analysis and PMS

Washington State Experience

National Pavement Management Conference Norfolk, Virginia May 6-9, 2007

Presentation Outline

- Introduction
- HMA life
- PG binders
- Studded tires
- PCC deterioration
- Forensic Studies
- Economic analysis
- Bituminous surface treatments
- Experimental features

Questions

How is Superpave performing? How does it compare to traditional methods?

Questions

 What caused the failure of this road? Design? Construction? Materials?

Questions

 What design factors will help ensure a long lasting pavement?

Need a Pavement Management System that will bring together...

Overview of WSPMS

- WSDOT maintains ~ 18,000 lane miles
- Annual pavement condition survey
 - 100 percent of pavement surface in the survey lane (~10,000 lane miles)
 - Rut/wear, IRI, faulting
 - Cracking, patching, raveling, spalling, etc.
 - Pavement Structural Condition (PSC)
- Skid resistance
- Performance equations
 - PSC determined using a best fit curve
 - IRI and rutting, at this time, determined using a straight line regression

HMA Pavement Life

HMA Pavement Life

- Life extension has occurred due to better management of roadways
- However, pavement life is also a function of improvements in:
 - Construction practices
 - Specification changes
 - Material selection process
- Over the last 10 years, pavement life has increased
 - Eastern: 5%
 - Western: 15%
 - Statewide: 16%

Year	East	West	Statewide
1997	10.7	14.6	12.9
2000	10.8	15.8	14.1
2003	11.3	16.5	14.7
2006	11.2	16.8	14.9

Are Performance Grade Binders Impacting Pavement Performance?

Performance Grade Binders

WSPMS Binder Selection

Asphalt Cement Type Specifica	ations				
Project Number:	Project Name:				_
State Route: 5	RRType:	Mainline		RRQualifier:	
Direction: Increasing	Begin MP:	198.89		End MP: 201.19	8
Overlay/Lift Thickness (ft):		Begin MP	End MP	Speed (MPH)	
Class of Mirr 2/0 in		102.00	199.96	60	
	<u> </u>	199.96	224.50	70	
Traffic Condition: Free	<u> </u>				
198.89				201.19	
Design ESAL: 35,000	1,000	WSPMS ES	AL: <mark>34,560,00</mark>		21.100
Design ESAL: 35,000	,000	WSPMS ES	AL: 34,560,00	5 <u>5</u>	
Design ESAL: 35,000	000 C Eastern Washington	WSPMS ES	al: <mark>34,560,00</mark> C M	0 ountain Passes	
Design ESAL: 35,000 Location • Western Washington	0,000 C Eastern Washington PG Bump	WSPMS ES	AL: <mark>34,550,00 C M ncrease high 1</mark>	0 ountain Passes temperature by 1 grade (6	S1:100
Design ESAL: 35,000 Location Western Washington Base PG: PG 58	1,000 C Eastern Washington PG Bump -22	WSPMS ES ng fraffic Volume:	AL: <mark>34,550,011</mark> C M Increase high 1 legress)	0 ountain Passes temperature by 1 grade (6	
Design ESAL: 35,000 Location Western Washington Base PG: PG 58 PG to be Used: PG 58	1,000 C Eastern Washington PG Bump 22 -22	WSPMS ES	AL: <mark>34,550,011</mark> C M nctease high l legress) No adjustment	0 ountain Passes temperature by 1 grade (6	

Intersection Rutting

- Eight projects
 - 1 to 7
 intersections
 per project
- Three binder grades
 - PG 76
 - PG 70
 - PG 64

Low Temperature Cracking

- Overlay projects
- High probability that cracks are reflective cracks from underlying HMA
- Low severity
 - Width < 6 mm</p>
- Medium severity
 - Width > 6 mm
- High severity
 - Width > 6 mm and spalled

Binder	Low (%)	Medium (%)	High (%)
PG	5.0	4.0	0.0
AR4000W	12.0	12.0	3.0

Studded Tire Damage

Studded Tire Damage

- 1972 Legislation allowed use of studded tires
- November 1 to March 31
- Damage seen primarily on highways with
 - Higher speeds
 - Higher volumes
 - HMA and PCC

Studded Tire Damage

I-5 Northbound, Milepost 112.23 (Lane 2) - Lacey Portland Cement Concrete Pavement

PCCP Wear

Note - Lane 1 is the leftmost lane

Studded Tire Wear on PCC

Rut Depth (mm)	Number of Lane Miles	
2 - 4	285	
4 - 6	507	
6 - 8	374	
8 - 10	200	
10 - 12	135	ົ່
12 - 14	60	1
14 - 16	24	→ '
16 - 18	12	\$
18 - 20	3	(6
Total	1600	

234 In-mi with more than 10 mm of wear

\$18.2 million in damage (estimate for diamond grinding only)

PCC Deterioration

- Scope
 - Understand the condition of PCCP in King County (greater Seattle area)
 - Application to the remainder of state
- Rehabilitated and nonrehabilitated sections
- Varying construction dates
- Performance of different sections

- The data and resources used
 - Construction dates
 - Traffic volumes, percent trucks, ESAL
 - Rehabilitation treatments
 - Pavement structure
 - 9 inch non-doweled slabs on varying base type and thickness
 - Distress summaries
 - Slab cracking, faulting, IRI and wear
 - Video imaging of pavement condition

- Construction occurred from 1962-1970
- Identified three "states"
 - Non-rehabilitated
 - Diamond grinding
 - Dowel bar retrofit and diamond grinding

Non-Rehabilitated PCCP 1999 Diamond Ground PCCP 2001 Diamond Ground and Dowel Bar Retrofited PCCP

Section	Avg IRI (in/mi)	Wear (inch)	% slabs > ½" faulting	% slabs cracked
Non-rehabilitated	157	0.34	29	14
Diamond Grinding	70	0.18	18	12
DBR and Diamond Grinding	52	0.26	3.4	4.4

Faulting (in)	Cracking	Assigned Value	Color	Pavement Condition
0 - 1/8	0 – 5%	1	green	Good
$\frac{1}{8} - \frac{1}{4}$	5% - 10%	2	yellow	Poor
1⁄4 +	10%+	3	red	Extremely Poor

Forensic Studies

PMS Provides...

- Construction data
 - Construction year
 - Pavement type
 - Pavement thickness
 - QA/QC data
 - Data exists in separate data base
 - Automatic electronic link is still under development
- Condition data
 - PSC
 - Rutting
 - IRI

Example of Condition Data

Pavement distresses comparison							
		1999	2004				
	_						
Distress	Low	Medium	High	Low	Medium	High	
Alligator Cracking	0.0	0.0	0.0	0.4	0.0	0.0	
Patching	0.0	0.1	0.0	0.0	1.6	0.0	
Raveling	0.0	0.0	0.0	0.0	0.0	0.0	
Longitudinal Cracking	0.3	0.0	0.0	1.4	0.0	0.0	
Transverse Cracking	0.0	0.0	0.0	0.3	0.1	0.0	
Flushing	0.0	0.0	0.0	0.0	0.0	0.0	

Example of Condition Data

Video Imaging

Economic Analysis using HDM-4

Pavement Management Needs

- WSPMS has ability to determine pavement performance on standard treatments
 - mill and fill, overlay, chip seal, etc.
- Currently lacks the ability to estimate how a funding cut (or increase) effects short and long-term pavement performance
- Potential applications
 - Highway Economic Requirements System (HERS)
 - Highway Development and Management System (HDM-4)

HDM-4 Calibration

- Highway Development and Management System (HDM-4) provides
 - Road performance prediction
 - Road treatment programming
 - Funding estimates
 - Budget allocation
 - Project appraisal
 - Policy impact studies
- Effectiveness is dependent on ability to accurately model and predict pavement performance

HDM-4 Calibration

- Effectiveness to model is dependant on
 - Structural design
 - Materials
 - Construction variability
 - Traffic
 - Vehicle operating costs
 - Environmental considerations
 - Maintenance and rehabilitation practices

WSDOT Budget Scenarios for HMA

Coonsula	Description	Budget Distribution			
Scenario	Description	2004-2005	2006-2015	2016-2043	
A	Cut \$30 M from the current WSDOT HMA budget in FY 2004-2005, then use the unconstrained budget for the last 38 years	\$144 (\$72/year)	\$4,013 (\$105.6/year)		
В	Cut \$30 M from the current WSDOT HMA budget in FY 2004-2005, then use the current WSDOT budget for the last 38 years	\$144 (\$72/year)	\$870 (\$87/year)	\$2,438 (\$87/year)	
С	Cut \$30 M from the current WSDOT HMA budget in FY 2004-2005, then bring the network back to the same condition as scenario D in 10 years	\$144 (\$72 /year)	\$1,050 (\$105/year)	\$2,438 (\$87/year)	
D	Current WSDOT budget for HMAs	\$3,482 (\$87/year)			
		(All cos	sts are in millio	ns of dollars)	

Predicted Roughness

Annual Average Roughness of AC Surfaced WSDOT Highways

Bituminous Surface Treatment Analysis

2005-2007 Biennium

- WSPMS staff identified a potential \$15 million in savings if current bituminous surface treatment (BST) protocol was implemented
 - ADT < 2000 vehicles</p>
 - ESAL < 50,000 per year</p>
 - HMA through cities and towns
- Legislative direction
 - Reduce pavement preservation program by \$10 million for next three biennium's
 - Monies given to Partnership Projects

Potential HMA to BST Routes

BST Protocol Refinement Study

- University of Washington study
 - What is the appropriate ADT level?
 - Is there a limit for truck volumes?
 - Other factors (noise, speed, grade, etc.)?
 - Are there combinations of BST to HMA cycles to obtain optimal performance?

BST Protocol Refinement Study

- Increasing number of BST surfaces will impact pavement performance
 - How do we quantify this impact?
 - Structural analysis
 - Economic analysis (HDM-4)
 - Performance prediction
 - Impact of rehabilitation cycle on user delay during construction and pavement roughness
 - WSDOT Pavement Management System
 - Traffic
 - Performance

WSDOT Lane Miles

Pavement Type	Lane-miles	% of Total
HMA	10,776	60
BST	4,843	27
PCC	2,262	13
Totals	17,881	100

WSDOT Lane-Miles by ADT

	Lane-miles				
AADT	BST	НМА	Flexible	All Types	
0-2,000	3,157	1,834	4,991	4,993	
2,000 - 4,000	819	1,645	2,464	2,486	
4,000 - 6,000	190	1,423	1,613	1,631	
6,000 - 8,000	8	840	848	934	
8,000 - 10,000	1	567	568	660	
10,000 - 20,000	4	2,094	2,098	2,572	
20,000 - 40,000	0	1,610	1,610	2,029	
40,000 -80,000	0	1,032	1,032	1,360	
80,000 - 160,000	0	436	436	640	
>160,000	0	132	132	360	

Preliminary Findings

- ADT < 2000
 - Apply BST
 - Exemptions for cities, towns
- ADT 2000 to 4000
 - Combination of BST and HMA
 - Exemptions for cities, towns, difficult traffic conditions, intersections, etc.
- ADT > 4000
 - HMA

Experimental Features

ADD DOT N

Experimental Features

- New technologies and innovative ideas
- Construction practices
- Specification development
- Pavement performance
 - Ride
 - Pavement condition
 - Rutting/wear
 - Faulting
 - Equal or better extension of performance life?

SR-395 SPS-2 Pavement Wear

Flexural Strength

Questions?