National Pavement Management Conference Norfolk, Virginia May 7, 2007

MEPDG Local Calibration Requirements

Harold L. Von Quintus, P.E.

An Employee-Owned Company

Presentation Overview

- 1. Introduction: Presentation Assumptions & Status of MEPDG
- 2. Why Local Calibration
- 3. Steps for Local Calibration
- 4. PMIS Data and Local Calibration
- 5. Summary Comments

Assumptions for Presentation

- 1. Agency has plans to use the MEPDG.
- 2. Agency plans to confirm calibration coefficients of distress prediction equations in MEPDG.
- 3. Agency has an active PMIS and routinely updates database.

MEPDG Status

- Manual of Practice submitted February 2007
- JTCP; 81% affirmative vote
- Moves on to subcommittee on materials & pavements
- Version 1.0 submitted,April 2007

Presentation Overview

- 1. Introduction: Presentation Assumptions & Status of MEPDG
- 2. Why Local Calibration
- 3. Steps for Local Calibration
- 4. PMIS Data and Local Calibration
- 5. Concluding Comments on Data Integration

Why Local Calibration?

Why Local Calibration?

MEPDG – Local Calibration

Manual of Recommended Practice for Calibration of M-E Based Models

- 1. Confirming or adjusting the global calibration factors.
- 2. Detailed and practical guide to complete local calibration.

NCHRP 1-40B; Draft available later this year.

Presentation Overview

- 1. Introduction: Presentation Assumptions & Status of MEPDG
- 2. Why Local Calibration
- 3. Steps for Local Calibration
- 4. PMIS Data and Local Calibration
- 5. Summary Comments

Steps: Local Calibration Hypotheses

- Mathematical models assumed to be correct.
 - * Response models
 - * Climatic model ICM
 - * HMA aging/PCC strength time dependent model
- Statistical or empirical models (transfer functions) may result in bias.

* Revision of model coefficients to remove bias.

Steps: MEPDG Ease of Use

New_JPCP - Mechanistic Empirical Pavement Design Guide

- - ×

File Edit View Tools

Steps for Local Calibration

Steps for Local Calibration

- 7. Assess bias
- 8. Eliminate bias
- 9. Assess standard error
- 10.Improve model precision
- 11.Interpretation of results& decide on adequacyof calibration factors

Execute MEPDG & evaluate residual errors.

Dispersion around line of equality

Presentation Overview

- 1. Introduction: Presentation Assumptions & Status of MEPDG
- 2. Why Local Calibration
- 3. Steps for Local Calibration
- 4. PMIS Data and Local Calibration
- 5. Summary Comments

Distress Data Sources

*LTPP

Special Agency Test Sections

- ★PMIS Sections A quick check:
 - * Do the distress predictions match our local experience for traditional designs?
 - *What is the primary failure mode triggering rehabilitation?

Distress Data Options

Data Needs: Robust Distress Data

- 1. Time series data for different distress
- 2. Roadway sections, **NOT** APT sites

3. Pavement management data

- Large time-history distress database
- Many dollars expended to collect data

4. Issues

- Distress definition; how measured
 - Accuracy of measurements

Data Needs: Project Level

MEPDG

- Determine design strategy, material type, layer thickness
- Satisfy design criteria.

PMIS

- Prioritize projects, select repair strategies, optimize costs
- Maintain desired performance level.

Can data collected for different purposes be used together?

Data Needs: Distress Definition & Measures

MEPDG

PMIS

- Fatigue Area Cracking
- Fatigue LCWP
- Thermal Transverse Cracking
- Rut Depths

IRI

- Fatigue Cracking
- Transverse Cracking
- Rutting
- Profile

Are Definitions & Measurements Compatible?

Distress Data, Example:

Distress Data, Example:

Variability; A key data issue.

Example; Rut Depth

Distress Data Analyses:

Within Project Variation; Outliers

Limited area with significant different distress value within PMIS segment.

Distress Data Analyses:

Within Project Variation; Abrupt Change

Distress Data Analyses:

Within Project Variation; Drift

Consistent change in distress over project length, within PMIS segment.

Distress Predictions Analysis: *Residual Errors, Rutting.*

EXPANDING THE REALM OF POSSIBILITY

Thank you. Any Questions?

