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Outline
• Background
• Pavement types; levels of analysis
• Inputs

– Climate/Environment
– Traffic
– Materials
– Reliability and construction 

Considerations
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Outline (cont.)

• Structural analyses-new design
• Distress estimates
• Structural section selection
• Rehabilitation (not discussed)
• Low volume roads (not discussed)
• Calibration considerations
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Why M-E Design?

• Better utilize available materials
• Assess changed traffic loading expeditiously

– New axle and gear configurations
– New tire designs and increased tire pressures

• Quickly assess behavior of new materials
• Improve reliability of performance prediction
• Assess impacts of construction on pavement 

performance
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Pavement Types

• Flexible (asphalt) pavements
– Conventional (HMA, unbound base and 

subbase)
– Deep strength and full depth HMA
– Semi-rigid and inverted (with asphalt or 

cement treated)
• Rigid (concrete) pavements

– Jointed plain concrete (JCPC)
– Continuously reinforced (CRCP)
– Shoulders (HMA, tied PCC, widened lane)
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Design Input Levels

• Level 1
– Use of site specific materials, environment, 

and traffic characteristics; material 
characteristics from laboratory tests

• Level 2
– Use of less detailed information

• Level 3
– Use of default values
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M-E
Pavement

Design
(flexible 

pavement 
example)
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Design Inputs

• Climate/Environment
• Traffic
• Materials
• Reliability and Construction 

Considerations
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Climate/Environment
• Water

– stiffness of untreated subgrade, aggregate 
subbase (ASB), and base (AB)

– Stiffness characteristics of pavement 
materials

– expansion/heave, fine-grained soils
• Temperature

– stiffness, permanent deformation and 
fatigue characteristics of asphalt-bound 
materials

– stiffness of untreated materials 
(freeze/thaw) 
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Pavement Temperatures
• Use of Integrated Climate Model (ICM) 

– for calculation of pavement temperatures 
• ICM inputs:

– air temperatures, cloud cover, wind speed
– site latitude   
– time of day
– pavement components, layer thicknesses
– material thermal characteristics: thermal 

conductivity and specific heat capacity
– surface reflectance
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Environment
(other considerations)

• ICM also used to estimate:
– moisture contents in untreated materials 

• ICM estimates:
– best for pavement temperatures
– less accurate for moisture contents (work still 

underway in this area; NCHRP 9-23 study 
likely to provide improvements)
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Traffic

• Primarily Trucks and Buses 
– axle loads
– axle type: single, tandem, tridem
– wheel type: single, dual
– tire type: regular, super (wide-based) single
– tire pressures

• regular (radial): 100-110 psi
• super single: 110-120 psi
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Materials

• Asphalt concrete
• Portland cement concrete
• Treated bases/subbases

– Asphalt treated: asphalt cement (ACB), emulsions 
(ETB)

– Cement treated (CTB)
– Lime treated (LTB)

• Untreated aggregate base/subbase (AB,ASB)
• Subgrade soils: untreated or treated (e.g. lime 

for expansive soil)
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Material Properties-
Structural Analysis

• Stiffness modulus 
– Elastic modulus used to represent materials 

response, E = σ/ε
– Other terms used: dynamic modulus (E*), 

resilient modulus (Mr), creep modulus (Ec)
• Poisson’s ratio, υ

– Ratio of lateral strain to axial strain
– Range for materials used for pavement 

design/analysis: 0.15 to ~0.5
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Asphalt Concrete

• Stiffness modulus (Smix) function of:
– time of loading, t
– Temperature, T
– mix properties: asphalt content (Vasp) and air 

void content (Vair):
Smix ~ Vasp/(Vasp + Vair)

– binder stiffness
– aggregate grading (dense vs. open)
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Asphalt Concrete Stiffness
• Measurement

– Axial
• dynamic (sinusoidal): complex modulus, E*

– Diametral
• haversine (pulse) loading: stiffness, Smix,; creep, 

stiffness, Ec

– Flexure
• dynamic (sinusoidal): complex modulus, E* 
• haversine (pulse) loading: stiffness, Smix

• Estimates
• New Design Guide (Witczak)
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Granular Materials (AB, ASB)

• Stiffness Modulus function of:
– water content
– dry density
– stress state; e.g., Mr = f(σ1, σ2,σ3) or f(θ) 

where:  θ = (σ1 + σ2 + σ3)
• Measurement

– triaxial test
• Estimates

– from  R value
– Shell:  Eg = K x Esub;

where: K = f (base/subbase thickness)
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Fine-grained Soils (Subgrades)

• Stiffness Modulus function of:
– water content
– dry density
– Stress state; Mr = f(σ1 – σ3)

• Measurement
– triaxial test

• Estimate
– Shell; Esub = 1500 x CBR (psi)
– from R value; Esub = (1155 + 555R) (psi)
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Structural Analysis- New Design
• Pavement representation

– Multilayer elastic system, flexible
– Plate on dense liquid (Westergaard), rigid

• Multilayer Elastic System
– Representation used at this time for flexible 

pavement analysis
– E and ν required for each layer
– circular loaded areas, uniform contact pressure
– full friction between layer interfaces
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Structural Analysis

• Inputs
– layer thicknesses 
– E and n values for each layer

• for AC layer(s) time of loading and temperature govern 
E value used

• seasonal variations in E values for untreated aggregates 
and fine-grained soils

– axle configuration and tire spacing
– tire loads and pressures

• Outputs
– Stress,σ; strain,ε; and deflection,δ

ν
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Distress Analyses and Ride Quality
(flexible pavement)

• Cracking
– AC: fatigue

• bottom up
• top down

• Permanent deformation (rutting)
• Low temperature cracking
• Smoothness (IRI)
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Distress and Ride Criteria
(rigid pavement)

• Rigid pavements (e.g. jointed, plain concrete)
– Fatigue cracking (transverse)
– Faulting

• Smoothness
– IRI

• Other rigid pavement types
– CRCP (in design guide)

(N.B. PCC pavement deign not discussed in the 
presentation)
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Fatigue Relationship –
Asphalt Concrete

• MEPDG based on NCHRP 1-10B and 
Asphalt relationships:

N = C k (1/et)n (1/EAC)m
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Pavement Analysis/Design, 
Fatigue cracking

• Usually, bottom-up  cracking

• Use of multilayer elastic analysis

tAC asphalt  concrete

granular base/subbase

subgrade

E*, Smix etc., [f (t, T)], υAC

E, Mr etc., υSB

E, Mr etc., υSG
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Permanent Deformation,
AC Layer(s)

• Prediction
– Layered strain procedure

• Cumulative Damage
– Time hardening



26

Compound Loading - Time Hardening
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• volumetric contraction as the temp 
decreases

• unrestrained - shortens 
• restrained - internal stresses, cracking
• crack propagates with  additional 

thermal cycles

Low Temp Cracking - Mechanism
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σT

colder

Temp
Gradient

T
σT (max)

If If σσTT (max) is > tensile strength of (max) is > tensile strength of 
asphalt concrete, cracking asphalt concrete, cracking 
occurs.occurs.

Mechanism
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Low-Temp Cracking

• cracking transverse to direction of 
traffic

• typical crack spacing:
– 3 to 300 ft
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Low Temp Cracking

• Prediction – New Design Guide
– Based on SHRP developed procedure

• Lab. Testing
– Dynamic moduli at low temperatures and longer 

times of loading (obtained from master curve)
– Indirect tension tests, low T
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Smoothness
( flexible pavement)

IRI = IRIo  + a( site factor) 
+ b( fatigue cracking)
+ c( low temperature cracking)
+ d( rut depth)



32

Construction Considerations
• Minimum layer thicknesses

– Granular base/subbase; 6 in. min.
– CTB; 4in. min. (preferably 6 in. min.)
– AC; 3 x max. aggregate size min. lift thickness

• Compaction requirements
– Granular layers

• e.g., upper 6-12 in. at least 100% Modified AASHTO 
dry density

– Subgrade
• e.g. upper 24 in. 95% Modified AASHTO dry density
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Need for Local Calibration and  
Validation

• Calibration and validation of the MEPDG 
by the developers based on results of the 
Long Term Pavement Performance 
(LTPP) Program. 

• The correction factors which are included 
in the performance equations for both the 
rigid and flexible design methodologies 
must thus be modified to reflect local 
conditions for individual states
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Need for Local Calibration and  
Validation

• This process includes considerations of 
local conditions and practices:
– Environment
– Traffic
– Materials
– Construction practices
– Maintenance and rehabilitation practices
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Need for Local Calibration and  
Validation  

• This necessity for local calibration was 
emphasized by the developers of the 
MEPDG in the NCHRP 1-37A Report;  
e.g., Section 3.3.6.1 for flexible pavements 
and 3.4.9.1 for rigid pavements.

• The presentations to follow will provide 
guides for this to be accomplished.


