Focusing Analysis on Appropriate Management Levels

Roger E. Smith, P.E., Ph.D.

Herbert D. Kelleher Professor in Transportation Zachry Department of Civil Engineering Texas A&M University

Pavement Management

- □ A Structured Decision Making Process
 - Application of systems engineering concepts
- □ Operates:
 - In organizations
 - At management levels

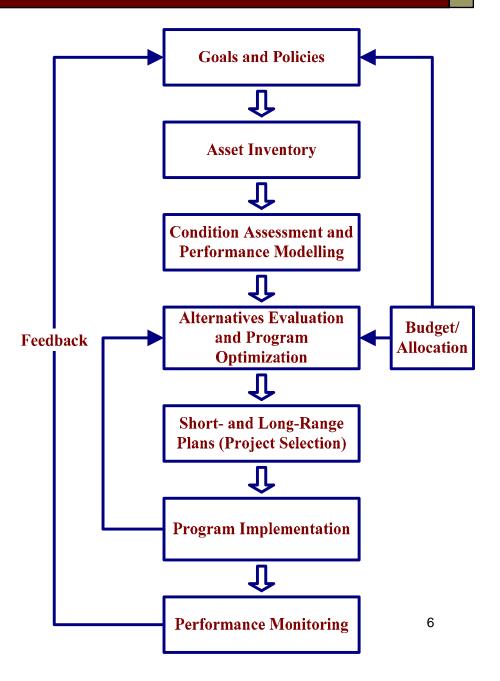
In Concept Pavement Management Includes

- □ Planning
- □ Programming
- □ Analysis
- Design
- □ Construction
- □ Operation
- □ Research

As Implemented

- Most Pavement Management Systems Address
 - Programmed (Preventive) Maintenance
 - Rehabilitation
 - Reconstruction
- Of Existing Facilities
- New Pavements, Research, etc. Come out of Other Systems or Planning

Transportation Asset Management


- □ Policy driven
- □ Data supported
- Investment analysisStrategic focus

□ Impacts all management levels

Not Much Different from Pavement Management Framework

Transportation Asset Management

- Emphasizes strategic view in infrastructure decision making
 - Investment analysis
 - Policy driven
 - Data supported
- □ Cross through all types of infrastructure assets
 - Gets rid of "stove pipe" management
- □ AASHTO & FHWA Studies

Management Levels

- Strategic (Asset) Planning, Programming & Allocation for All Systems
- Network Planning & Programming for Entire Set of Type Facility Managed
- Project Selection Programming a Subset
- Project Designing a Specific Section
- Last three primary focus of traditional PMSMany focused on the last two

Strategic – Level

- Related to Investment Analysis & Fund Allocation
 - Total Funds Needed and Allocation of Funds for Each Type Facility
 - Show Impact of Funding Options
 - Justification of Funds
- **Communicate with Funding Authorities**
 - Level of service desired
 - Investment needed to provide that service

Network-Level

- □ Related to the Budget Process
 - Identify Maintenance and Rehabilitation Needs
 - Funds Needed to Complete M&R
 - Prioritized Listings of Segments Needing Work
- □ Allocation to
 - Sub-organizations
 - Funding Categories
- □ Show Impact of Funding Options
 - Preservation vs New Construction
 - Distribution Among Sub-organizations
- □ Communicate Within Agency

Input from Strategic-level

Project-Selection-Level

- Identify Constraints not Previously Considered
 - Physical
 - Financial
- □ Refine Alternative Treatments
- Improve Cost Estimates
- Select Segments for Funding & Project-Level Analysis, Design & Construction
- □ Show Impact of Deviation from Network-Level

Project-Level

- Develop Cost-effective Strategy for:
 - Original Construction
 - Maintenance
 - Rehabilitation
 - Reconstruction
- □ Within Imposed Constraints
- □ Complete Design

Input from Project Selection-level ²

Post Project-Level

Complete Required Work

Monitor Construction

Monitor Performance

Strategic-Level Process

- Input from Network-Level Type Facility Systems including PMS
- Information Combined Often Manually
 - Computerized Systems under Development
 - A Few Limited Systems in Use
- Decisions About Funding Levels, Allocation, and Policies
 - Funding authorities
 - Senior management

Network-Level Process

- □ IMS Software Used to Develop Recommendations
- Staff Use PMS Reports to Prepare Recommendations to Senior Management
- Decisions About Funding Levels to Districts and Work Classes
 - Senior Management
 - Department Managers
 - Sometimes District Level

Project-Selection Level Process

□ Some Help From Software

- Consider Constraints not Included in Network-level Analysis
- Finalize Candidate Project List
- Add & Remove Projects
- Modify Project Limits (Combine Sections)
- Adjust Dates
- Improve Cost Estimates
- □ Responsible
 - Senior Management and/or District Managers
 - District Staff

Project-Level Process

- May be initiated by different network-level and project selection-level systems
 - Other management systems
 - □ Safety may require realignment
 - Planning activities resulting in new facilities
 Additional capacity
 - Other work
 - Repair of drainage components may generate design of reconstructed pavement

Project-Level Process

Use Available Design Procedures

Design to Meet Needs

□ Functional, Structural, Safety, & Reliability

Consider

□ Life Cycle Costs, Other Constraints & Impacts

- Within Available Funds
- □ Construct
- □ Operate
- □ Work Completed by
 - Engineering group (design, construction, & operation)

1	. Con		Sec.	A
R.	Æ	$\langle \rangle$	17	THE I
1		2	X	Ð
1	9	1876	9.)	1
	No.		1	

District and central office

Differences in Those Responsible

Project-level

- Engineers/Technical Staff
- Project-selection Level
 - Senior Management or District Managers
 - District Staff
- □ Network-level
 - Senior Management
 - District & Department Managers
- □ Strategic-level
 - Funding authorities
 - Senior management

Those Responsible Vary

- Differences Depend on:
 - Centralized, Decentralized, Public Private Partnerships or Privatized
 - Maintenance, Rehabilitation, Reconstruction or New Construction
 - Bridges, Pavements, Intersections or Additional Capacity
 - Interstate, US, SH, or Local Urban or Rural

Organizational & Historical Relationships

Differences in Data Required

- Project-level Detailed data needed to complete design
- For those sections selected for work in funding period (very small % of network)
 - Mechanics based design models and inputs
 - Functional, structural, & safety requirements
 - Available materials, etc.
 - Material properties, construction techniques, etc.
 - Other constraints & impacts
 - Costs & available funds
 - Prior performance if M&R

Project-Selection Level

- Enough data to compare preliminary alternatives for sections considered for funding (small % of network)
 - Consider constraints not included in network-level analysis
 - □ Programmed work
 - □ Additional work
 - □ Funding restrictions
 - Define work limits & best time to complete work
 - □ More complete performance data than network-level
 - Preliminary design using limited data in full model or limited design models

Network-Level

Data on every segment in the networkEnough to identify:

- Best group of candidate segments or
- Number & type of segments that need to be addressed
- Funding impacts of different alternatives
- Optimization, prioritization, or simulation using empirical models that connect condition, or changes in condition, of type facility to changes to funds invested
 - □ Network-level condition
 - □ Network inventory
 - □ Past M&R, etc.

Strategic-Level

□Focus of Asset Management

- Combined Data from Network-level Systems
 - Data on every segment in every infrastructure network
- □ Funding needed to provide desired level of service in all facilities
 - Enough to identify:
 - □ Best allocation among systems
 - □ Funding impacts of different alternatives
 - Multi-objective optimization, prioritization, or tools using empirical models that connect performance, or changes in performance, of type facility to changes to funds invested

Differences in Data

- □ Project-level
 - Detailed data needed to complete design
 - For very small % of network
- □ Project selection-level
 - Enough data to select projects to be funded
 - For small % of network
- □ Network-level
 - Enough data to identify candidates & support allocation
 - For entire network
- □ Strategic-level
 - Data from network-level (entire network)
 - Data that funding authorities can use

Indicators of work performed and results achieved

Focus of Most Civil Engineering Education

- □ Solve problems in a specific way
 - Design a facility or system
 - Mechanics or process based
 - Materials are chemical compounds
 - Mathematics used to characterize conditions

Civil Engineering Design

- Defines problem
 - Objectives & functional requirements
- Considers constraints
 - Economical, environmental, sustainability, constructability, ethical, health & safety, social, and political
- □ Feasibility
 - Identifies and analyzes several feasible alternatives

Civil Engineering Design

- Design Methodology
 - Employs appropriate design models and tools to solve the engineering problem
- Selects Best Design Option(s)
 - Meets constraints
 - Least life-cycle cost or
 - Best benefit-cost ratio

Focus of Many Engineers

- □ Project level
- Project-selection level
- Engineers who move to management then develop focus on:
 - Network level
 - Strategic level
- □ Many want project-level data for entire network
 - Blame it on us educators
 - Great dream; impossible in my life-time

Analysis System Design, Development, & Selection Issues & Barriers

- □ System Not Matched to Agency
 - Needs
 - Resources
 - Capabilities
- Quality & Availability of Data
 - Excessive data requirements lead to abandonment
 - Focus the data needed to the decisions being supported at the management level
- Perceived Complexity
- □ Black Box IMS

Overcoming Organizational Issues

- Conduct Organizational Analysis of Current Management Process
 - Know your agency!!!!!
 - What decisions need supported at what level?
 - What processes need to be changed?
 - Who controls acceptance/implementation?
 - What benefits would affect acceptance?

System Design, Development, & Selection for Success

□ Compatibility

- Form follows function
- Select the tool needed for the problem being addressed
- □ Complexity
 - Provide support needed with tools agency can use and sustain
- □ Relative Advantage
 - Must provide something better than currently available – for least possible resources

Provide Interconnectivity Among Levels

- Same definitions of distress but different levels of accuracy, precision, and reliability
- □ Same approach to models
 - Performance equation parameters dependent of different levels of detail
 - Project-selection uses deterministic equations from same data that network uses for probabilistic equations
 - Best return for funds expended based on similar concepts

Analysis System Design, Development, & Selection for Success

- □ Compatibility
 - Provide tool that supports decisions being made
- □ Complexity
 - Provide support needed with tools agency can use and sustain
- □ Relative Advantage
 - Must provide something better than currently available at less expenditure if possible

Analysis Tools

□ Project-level

- Mechanics based design models
- Life-cycle cost analysis & engineering decision theory
- □ Project selection-level
 - Preliminary design using limited data in full model or limited design models
- □ Network-level
 - Optimization, prioritization, etc. tools using empirical models that connect condition, or changes in condition, over time of type facility to changes to funds invested
- □ Strategic-level
 - Multi-objective optimization, prioritization, or tools using empirical models that connect performance measures, or changes in performance measures, over time of type facility to changes to funds invested

Focusing Analysis Tools

- Engineers Solve Problems
 - Within constraints imposed
 - Including data that is valid at that level
- Analysis Tools Must
 - Address the problem
 - At the level
 - Within constraints
 - Interconnect

Horror Stories

- Too Complex
- No Connection
- Two Points Sophisticated Analysis
 - Monte Carlo
 - Neural Nets
 - Genetic Algorithms

Data Collection Axioms

- Collect Only the Data Needed Only When It Is Needed
- Corollary Stage Data Collection
 - Update/validate only the data you need for sections being considered at the level you need it
 - And
 - Collect additional data you need only for sections being considered at the level you need it

Data Collection

- □ Focus data collection & upkeep
 - On data needed to support decisions at level being address
 - For sections being considered at that level
 - On what is available and can be collected at reasonable expenditures
 - Different "complete" data sets for different levels in same database

Questions?

