Real-time 3D Scanning System for Pavement Distortion Inspection

Bugao Xu, Ph.D. & Professor

University of Texas at Austin Center for Transportation Research Austin, Texas 78712

Pavement distress categories

Fracture (cracking, spalling and fatiguing)

Distortion (rutting, corrugation and shoving)

Disintegration (stripping, raveling)

Rutting and Shoving

 \succ Rutting: surface depression in the wheel path.

- Shoving: longitudinal or transverse displacement
- Pothole: bowl-shaped holes of various sizes in the pavement surface

System principle

- Dynamic generation and characterization of 3D pavement profiles.
- Structured light.

System principle

System Items

✓ An infrared laser line projector

✓ A GigE digital camera

Laser line transversely covers pavement lane

- Camera captures consecutive laser line images while the vehicle moves forward
- Structured-light triangulation
- > 3-D transverse profiles for distress detections

Elevation calculation

$$\begin{cases} \alpha = \arctan(y_a / f) \\ h = l \cdot \tan(\theta) \\ m = l \cdot \tan(\theta - \alpha) \\ \Delta h = h - m = l \cdot (\tan(\theta) - \tan(\theta - \alpha)) \end{cases}$$

The unknown parameters (*f*, *l* and θ) can be obtained through a calibration procedure.

System specifications

Maximum scan rate	200 lines/sec
Sample Points	1024 points/line /1 unit
Scan width	1830 mm/ 1 unit
Vertical resolution	2 mm
Horizontal resolution	1.79 mm
Profile spacing	76.3 mm @55km/h
Maximum vehicle speed	112 km/h

Calibration

- An infrared filter eliminates the effect of the ambient lighting
- > Only the points in the laser stripe are available
- The surface points are all located in the laser plane
- Tsai model is adopted to satisfy the coplanar calibration constrain

Calibration pattern and feature points

Multi-view scheme

Laser stripe location

- > The processing time < 5 ms
- Image frame rate up to 200 frames per second.
- Insensitive to lighting conditions and pavement textures.

Sub-pixel laser stripe location

Median filtering

Coarse edge detection

Stripe curve interpolation by cubic splines

Fine profile adjusting (sub-pixel)

Laser line locating procedure

Edge detection

 $\int \text{if } (avgGray \le threshold_1) \& \& (ratioAvg2Bkg \le threshold_2), \begin{pmatrix} -5 & -53 & -5 \\ 0 & 0 & 0 \\ 5 & 35 & 5 \end{pmatrix}$

else. Canny

avgGray: average grey value of image

ratioAvg2Bkg: the ratio between average grey value and background of image

Canny operator: with dynamic thresholds (which change depending on the image àverage grey value) is applied.

Fine profile adjusting

$$Y = Y_{r} - k + \sum_{Y_{r}-k}^{Y_{r}+k} F(i)(i - Y_{r} + k) / \sum_{Y_{r}-k}^{Y_{r}+k} F(i)$$

- *Y*: final profile precise location.
- Y_r : coarse position of the stripe obtained from last step.
- F(i): the image grey value at pixel *i*.

Adjust the profile in each image column.

3D scans of a target

Triangular	Actual	Scanned (mm)	
target	(mm)	Mean	S.D.
Height (H)	200.6	200.475	0.319
Width (W)	706.0	706.873	0.290

Pavement rutting measurement

Pavement rutting refers to surface depression in the wheel path.

Median filtering

Approximating profile

- Calculating the 1st and 2nd order derivatives of the endpoints
- > Searching the rut support point pair

> Calculating the rut parameters

Rut depth measurement

Approximating profile

Searching rut support points

Calculating rut parameters

- Rut depth: The maximal distance between the line AG and the road profile
- Rut area: The area between the line AG and the road profile
- Rut level: According to the rut depth, rut level is classified into 4 levels:

\checkmark	depth <6 mm	1
\checkmark	6<=depth<12	2
\checkmark	12<=depth<19	3
1		_

 \checkmark

depth>=19 4

Rutting Measurements

Parameter	Scanned			Manual
	Run 1	Run 2	Run 3	
Max rut depth (mm)	58.67	57.27	60.11	60
Rut depth (mm)	36.54	38.07	38.11	37.64
Rut area (mm ²)	37514.56	38053.42	40154.63	N/A

Shoving Measurements

- Locate support points of shoving profile (points B&E)
- Search bump root points A&C, and points D&H
- Calculate the heights of the bumps (h_0 and h_1)
- Calculate the shoving width and depth

Shoving Measurements

Parameter	Scanned			Manual
	Run 1	Run 2	Run 3	
Max depth (mm)	71.30	72.64	72.53	75
Max width (mm)	675.57	704.01	703.96	700

Pothole detection

Parameter	Scanned	Manual
Pothole depth (mm)	67.53	71
Pothole width (mm)	477.93	472

Summary

- ➢ 3D pavement profiles: real-time
- Structured light: reliable and inexpensive
- > Multi-view coplanar calibration:
- Laser stripe locating method: sub-pixel accuracy
- Preliminary experiments: accurate rutting and shoving measurements.