Pavement Evaluation 2010

Determine Localized and Homogeneous Rutting Sections Using Shortest Path Algorithm

Presented by

James Tsai, Ph.D., P.E.
Georgia Institute of Technology
James.tsai@gatech.edu
Acknowledgement

- Project is sponsored by the US DOT RITA program.
- Co-authors
 - Dr. Zhaohua Wang
 - Feng Li, PhD student
 - Vivek Kaul, PhD student
 - Yiching Wu, Research Engineer
Outline

- Background
- Objective
- Proposed methodology (1-D approach)
- 3-D Approach - rut volume estimation using 3D continuous transverse pavement profiles
- Conclusions and future research
Background

- Pavement rutting increases the potential for a vehicle to hydroplane and loss of vehicle control (safety concern).
- Pavement rutting is often reported (aggregated) using a fixed interval (e.g. 1 mile or 0.1 mile).

![Rut Depth Graph](graph.png)
Localized rutting is often not identified in current reporting method. It is difficult to determine homogeneous rutting sections from the rutting data that has large variations.
Objective

- To propose a method that can determine homogeneous rutting sections optimally using the rutting data with variations.
- To propose an effective way to reduce the data while preserving important rutting information.
Proposed Methodology

- Formulate the problem into an optimization problem (a constrained segmentation problem - CSP)
- Convert CSP to a network flow problem
- Solve the network flow problem by employing a shortest path algorithm

Topological Ordering based Segment Clustering (TOSC) Method
Constrained Segmentation Problem (CSP)

- **Objective**
 - To group \(m \) rut depth measurements into \(n \) clusters in a way such that the total variation is minimized

- **Given**
 - \(m \) rut depths \(r_i \) \(\{1, 2, \ldots, m\} \)

- **Constraints:**
 - Measurements have to be clustered consecutively
 - A cluster is required to contain at least \(L \) measurements
 - e.g. contains at least \(L=2 \) measurements
 - The mean rut difference between adjacent clusters should be greater than \(D \)
Convert into a Shortest Path Problem

- CSP can be converted to a network flow problem according to the continuity constraints
- Each cluster corresponds to a node in the network model
- Each combination of clusters corresponds to a path from the dummy source node to the dummy sink node in the network model
- The variation of each cluster is the distance to walk through the corresponding node
TOSC Method (Cont.)

- Solve the Network Flow Problem (L=2 & D=0)

Qualified cluster nodes: 5
Qualified arcs: 8
Test Results Using Real Data

- Data: Rut depth data from the Louisiana DOT (0.01 mile)

Min length: 0.02mi; Min depth: 1/8 inch

A total of 34 homogeneous sections in a 4.5-mile section.
Extend to 2D and 3D
3D Rut Volume Estimation
- A Preliminary Study
3D Continuous Transverse Laser Profile

- Transverse direction: 1 mm
- Longitudinal direction: 1 – 5 mm
- More than 2.3 million points per second

(Source: Laurent, et. al., 2008)
Validate the Algorithm for Spot Rutting Detection

- Process, analyze and cluster data for identifying spot rutting (localized ruts)

Reference data | Algorithm data

(Scott et. al., 2008)
3D View of Rutting

- Rut sample (depth \(\frac{1}{2}\) in.)
- 3D continuous laser profile
 - Transverse direction: 1 mm
 - Longitudinal direction: 1 mm
Smooth and Level Profile
Validate the Profile
Compute Rut Area and Volume

- Compute rut area
 \[
 A = \int_{x=0}^{L_x} f(x) \, dx \approx \sum_{i=1}^{L_x} f(x_i) \cdot \Delta_x
 \]

- Compute rut volume
 \[
 V = \int_{y=0}^{L_y} A(y) \, dy \approx \sum_{i=1}^{L_y} A(y_i) \cdot \Delta_y
 \]
Conclusions

- The Topological Ordering based Segment Clustering (TOSC) method is first time proposed to optimally determine homogeneous rutting sections, and it produces good outcomes.
- The TOSC method is demonstrated to be able to:
 - Determine homogeneous rutting sections for the rutting data with variations.
 - Make a flexible segmentation by adjusting constraints (L and D) to meet following purposes:
 - Network level analysis
 - Project level analysis, e.g. localized rutting identification
- The method has a promising potential to reduce the huge amount of rutting data and store only the boundaries of homogeneous rutting sections that are important to engineers.
- The method can be applied to determine homogeneous sections of other pavement condition data (e.g. IRI).
Future Research

- Test more cases using data collected from real roadways (e.g. a road section with verified localized rutting) and evaluate the results quantitatively.
- Compare the TOSC method with other methods, such as cumulative difference approach (CDA).
- Develop methodology to identify rut location and estimate the volume.
- Develop methods to remove the signal noise and non-rut distresses (e.g. crack).
Thanks & Questions?
Agenda

- Background
- Objective
- Proposed methodology (1-D approach)
- 3-D Approach - Rut volume estimation using 3D continuous transverse pavement profiles
- Future research