

### Field Evaluation of Foamed Asphalt Stabilized Base Layers

Charles Schwartz, Sadaf Khosravifar, and Dimitrios Goulias University of Maryland Pavement Evaluation 2010 October, 2010

## **Overall Study Questions**

- What are appropriate plant-produced FASB mix designs for MD materials?
- What are typical engineering/design properties?
- What are appropriate production and placement guidelines?
- What are best QC/QA practices, especially for field testing?
- What are the economic advantages of FAB?

# Study Collaborators

- University of Maryland
  - Charles Schwartz, PI
  - Dimitrios Goulias, Co-PI
  - Sadaf Khosravifar, GRA (+others)
- Maryland State Highway Administration
  - Soils and Aggregates Division (Dan Sajedi, George Hall)
  - Pavement and Geotechnical Division (Nate Moore)
- Maryland Producers
  - Chamberlain Contractors (Harold Green)
  - P. Flanigan and Sons (Tom Norris)
- Others
  - Mike Heitzman (NCAT)
  - Mike Marshall (Wirtgen America)
  - Brian Diefenderfer (VTRC), Trenton Clark (VDOT)

## **Asphalt Foaming Process**





(Collings, 2009)

### **Portable Production Plant**



(Wirtgen)

THE A. JAMES CLARK SCHOOL of ENGINEERING

UNIVERSITY OF MARYLAND

# Field Test Sites

- Lane Widening
  - York Road (Timonium, MD)
- Lane Addition
  - MD 295 (Baltimore, MD)
- Full-Depth Patching
  - Glenn Dale Maintenance Facility (Prince George's Co, MD)
  - Oxon Hill Fire Station (Oxon Hill, MD)
- Reconstruction
  - Truman Parking Lot (Annapolis, MD) (??)
  - I-81 (Staunton, VA)







Nuclear Density Gauge



GeoGauge



Zorn ZFG2000A LWD

### **York Road**



FWD





## York Road: FWD Deflections





Sensor Distance (in)

#### 4 FASB Locations, 4 Control Locations





Maintenance Facility





Prima 100 LWD

Zorn ZFG2000 LWD



### **Oxon Hill Fire Station**





## MD 295: Subgrade Stiffness



|         | LWD   | GeoGauge | FWD   |
|---------|-------|----------|-------|
| Mean    | 164.6 | 188.4    | 161.3 |
| Std Dev | 59.6  | 61.9     | 70.4  |
| COV     | 0.43  | 0.33     | 0.44  |



# Laboratory Study

- Materials
  - 100% RAP (1+2)
  - RAP-Recycled PCC Blend (3)
  - RAP-Granular Base Blend (3)
  - I-81 Processed RAP
- Tests
  - Binder (Expansion Ratio, Half-Life
  - Mix Design (Proctor, IDT)
  - Dynamic Modulus
  - Repeated Load Permanent Deformation

### Interim Conclusions: Field Evaluation (based on limited/poor sites to date)

- Nuclear density gauges not ideal for FASB
  - Need moisture content correction for asphalt
  - Cannot capture stiffness increase with curing
- Inconsistent stiffness values from different devices
  - No "gold standard"
- High spatial variability, even over short distances

### Contact Info:

### Dr. Charles W. Schwartz

University of Maryland schwartz@umd.edu +1.301.405.1962





