VALIDATION OF FDOT AUTOMATED FAULTING METHOD

Abdenour Nazef, Alexander Mraz

Roanoke, VA

October 26, 2010

Outline

- Background
- Goal & Objectives
- Automated Faulting Program
- Test Equipment
- Data Collection
- Results
- Analysis
- Conclusion
- Recommendation

What is Faulting ?

"...the difference in elevation across a transverse joint or a transverse crack .." Ref. AASHTO R-36

Faulting is ...

- a key distress in jointed concrete pavements
- an important performance indicator
- a critical factor in the life-cycle cost of a pavement

Note: Vertical deflections are exaggerated.

Source: Pavement Interactive – http://pavementinteractive.org

Catalysts for the study ...

- HPMS reassessment requirements
- Need to leverage profile data
- Lack of validation information
- Safety

Automated Faulting Program

Automated Faulting Program TRB Publication 10-1868, 2010

Goal and Objectives

Validate automated faulting method

- Phase 1 Faulting simulation
- Phase 2 Field validation

Automated faulting precision

- Repeatability
- Accuracy
- Reproducibility

Georgia Faultmeter

Five High Speed Profilers (HSP)

IRI Filtered Cross Correlation

HSP	Interval (in)	Left	Right
29748	0.8	93	94
30330	0.7	92	96
30781	0.9	62	84
29863	0.8	94	97
30392	0.7	97	97

Faulting Simulation Device

Software

- Automated Faulting Program Major Steps
 - Remove user-defined exclusions from collected data
 - Set default sensitivity factor (SF)
 - Find valleys (negative slopes) and peaks (positive slopes) meeting minimum SF
 - Calculate distance between consecutive peak and valley
 - Distance has to be less than 2.5 inch to consider the couple as joint
 - Calculate faulting based on AASHTO R36-04 criteria
 - Check if the calculated faulting is more than 1/64th inch (FDOT PCS spec) → YES → temporary save location of the joint

This is a test page!

- Automated Faulting Program Major Steps
 - Repeat previous steps for all the points in the given profile
 - Check distance between consecutive joints to be more than 14.8 in → NO → keep one with deeper fault
 - Count number of joints
 - Repeat all previous steps for different SF
 - Keep SF which has largest number of found joints meeting all previous described criteria
 - Recalculate joint location and fault magnitude for the chosen SF
 - Save results

Phase 1: Simulated Faulting

- "controlled" conditions (eliminates effects of pavement texture and vehicle wander)
- Asses HSIP's ability to collect accurate and repeatable elevation data in a dynamic mode
- Middle laser was used to collect elevation data
- Average of left and right accelerometer readings was used to correct middle laser sensor height data

Phase 1- Simulated Faulting

- 5 HSP
 - > 0.68 to 0.91 inch interval
- Faulting simulation device (reference)
 - >13, 11.89, 10.07, 7.00, 5.05, 2.01, 0.91 (mm)
- 6 speeds
 - > 20,30,40,50, 60, and 70 mph
- 3 replicate runs per speed

Phase 1- Simulated Faulting

Phase 1- Simulated Faulting (defective sensor)

Phase 2- Field Validation

- SR-331 (Waldo Road)
 - > PCP, 20 ft slabs, burlap drag texture, 50 joints
- 5 HSP
 - >0.68" to 0.91" sampling interval
 - ≻3 runs @ 40 MPH
 - Right laser/accelerometer
- Georgia Faultmeter (reference)
 >9 readings across right wheelpath

Phase 1 - Simulated Faulting

Phase 1 - Simulated Faulting

Speed	Slope	Intercept	B ²
(mph)	(mm)	(mm)	11
20	0.978	0.568	0.999
30	1.007	0.299	0.999
40	1.010	0.153	0.998
50	1.008	0.196	0.999
60	0.989	0.354	0.999
70	0.991	0.459	0.999

Phase 1 - Simulated Faulting

- Accuracy
 - maximum bias between HSP and simulated faulting device
- Repeatability

➤maximum range within a HSP

Phase 1 - Simulated Faulting

Accuracy	Repeatability
(mm)	(mm)
0.60	0.65

Phase 2 – Faulting Field Validation

- Accuracy
 - maximum bias between HSP and Georgia Faultmeter
- Repeatability

➤maximum range within a HSP

Reproducibility

➤maximum range among all HSPs

Phase 2 – Joint Detection

- True Positives
 - > existing joints detected
- True Negatives
 - >existing joints not detected
- False Positives

>non-existing joints falsely detected

(# True Positives) x 100

Joint Detection Rate (%)=

(# True Positives + # True Negatives)

Phase 2 – True Positives

29748	29863	30330	30781	30392
41	42	40	37	47
82%	84%	80%	74%	94%

Phase 2 – True Negatives

29748	29863	30330	30781	30392
9	8	10	13	3
18%	16%	20%	26%	6%

Phase 2 – False Positives

29748	29863	30330	30781	30392
9	8	8	7	16
18%	16%	16%	14%	32%

Phase 2 - Automated Faulting

"Precision" (mm)				
Accuracy Repeatability Reproducibilit				
1.2	1.1	0.5		

Analysis

Phase 1- Simulated faulting

- Speed gradient had an upward bias at all speeds.
- Simulated faulting accuracy estimated at 0.6 mm.
- Simulated faulting repeatability estimated at 0.65mm.

Analysis

Phase 2 Field validation

- Positive joint detection was 80 to 90%
- Automated faulting accuracy was 1.2 mm.
- Automated faulting repeatability was 1.1 mm.
- Automated faulting reproducibility was 0.5 mm.

Conclusions

- The simulated faulting device is an effective tool to test an inertial profiler system's ability to make accurate height measurements in dynamic mode.
- The FDOT Automated Faulting Method provides a safe, fast, accurate, and cost effective method faulting measurement method.

Recommendations

Additional validations work...

- Range of joint widths
- Different joint and slab conditions
- Range of slab lengths and geometry
- Various profile filters

Recommendations

Improve the algorithm by ...

- Enhancing positive joint detection
- Reducing false positives, and
- Increasing program efficiency

Mississippi Data – True Positives

Caroll	Hinds	Itawamba	Leflore	Washington	Oktibeha
160	17	26	55	10	31
74%	100%	96%	98%	56%	91%

Thank you!