Ground Penetrating Radar (GPR) for Pavement Condition Evaluation

> by Kenneth Maser Infrasense, Inc.

Pavement Evaluation 2010 Roanoke, VA

Presentation Outline

- Background
- GPR Equipment and Software
- Pavement Applications
- Future Prospects

What is GPR?

- Transmits pulsed radio waves through pavement materials
- Waves reflect at material boundaries
- Arrival time and strength of reflections determine material depths, thicknesses, and properties

What does GPR Detect?

- Thickness of pavement layers
- Reinforcing steel
- Density variations
- Subsurface moisture
- Voids

Evolution of GPR

- 1960's,70's early development
 - Military applications
 - Tunnel and mine detection
- 1980's Initial adaptation to highways
- 1990's Practical development and implementation for pavements
- 2000+ Adaptation by highway agencies

GPR Equipment

- Data acquisition and control systems
- GPR antennas
 - Air Coupled
 - Ground Coupled

1 GHz Horn Antennas

 $\wedge \neg$

Current Horn Antennas

1 GHz Horns

2 GHz Horns

Ground-Coupled Antennas

1.5 GHz

Equipment Summary

- Antennas have become more compact
- Electronics have become more stable
- Range of frequencies has expanded
 - Provides higher resolutions, greater depths of penetration

Software and Data Interpretation

Principles of GPR Application

INFRASENSE, Inc

Sample of Data

Sample Graphic GPR Data

distance

Pavement Surface

Sample Processed Graphic Data on Asphalt Pavement

Pavement Surface

Linear Plot of Pavement Layer Thickness

GPR Data for PCC Pavement

Typical Pavement Structure Data Analysis

GPR Data with Unclear Interpretation

Software/Interpretation

- Software developments have facilitated quantitative analysis
- Some interpretation is still required to distinguish layer types
- Fully automated processing is available for limited applications (density, FWD)

Pavement Applications

Pavement Applications of GPR

- Pavement Management (Network)
- Rehabilitation Design (Project)
- Quality Assurance of New Pavement Construction (thickness, density)
- Subsurface Moisture/Drainage
- Location of Dowels
- Detection of Asphalt Stripping

GPR for Pavement Management

- Layer structure data for PMS
- Layer thickness for network FWD
- 100-200 lane miles per day coverage
- Results typically at 0.1 mile intervals

Rehabilitation Design

- Existing thickness for overlay design
- Bound layer thickness for design of in place recycling depths
- Thickness used with FWD data
- Locate areas of high moisture for drainage design
- Locate subsurface damage

Accelerated Rutting from Clogged Drains

View of Clogged Drain

Detection of Drain with GPR

Base Moisture Content from GPR

INFRASENSE, Inc.

Future Prospects for GPR

• Equipment

- More compact, portable (wireless) equipment
- Implementation of antenna arrays
- Increased frequency range for depth/detail
- Software
 - more automated, user friendly
- Applications
 - Improved detection capability for expanded applications