FRICTION STUDY ON LTPP SECTIONS IN CONNECTICUT

John W. Henault, P.E. Connecticut Department of Transportation

> Iliya Yut, M.S. Adam Zofka, Ph.D. University of Connecticut

Pavement Evaluation 2010 October 25-27, 2010 Roanoke, Virginia

Who needs pavement friction?

I-84 in Manchester, Connecticut

Motivation

- To present a historical overview of pavement friction testing in CT.
- To report in the context of presenting a realworld State Highway Agency's experience (ConnDOT's)
- To present an academic perspective (UConn's) of data collected using statistics.

History - May 1968 Bureau of Public Roads (FHWA) Demonstration in Connecticut

PAVEMENT FRICTION TESTING IN CTHISTORICAL OVERVIEWTRB PAPER 10-0426

In 1970, ConnDOT's first pavement friction tester was this 'one-of-a-kind' unit from TestLab Corporation of Chicago

K J Law Engineers Friction Testers

Dynatest Corp. 2005

High-Speed Laser Instrument Mounted to Dynatest Pavement Friction Tester

2007 - Circular Texture Meter (CTMeter)

2008 - Transportation Pooled-Fund Study TPF-5(141)

Study Partners:

- FHWA
- CT
- GA
- MS
- PA
- SC
- VA

Pavement Surface Properties Consortium: A Research Program Contractor: Virginia Tech Sponsoring Agency: Virginia DOT

2009 - GripTesterTM Loan to ConnDOT

Pavement Characterization

Rt. 2 LTPP (SPS-9A) Sections

cheste

Googl

MP 25.48	Direction of Travel Eastbo	MP .	29.70 MP 31.72
	MP	27.48	
	EB 1 CT Class 1 AC-20 (LTPP 090901)	EB 2 Superpave PG 64-28 (LTPP 090902)	EB 3 Alternative Superpave PG 64-22 (LTPP 090903)

Equipment and Testing Protocols ASTM E-274 locked-wheel tester

- V=40±1 mi/hr
- 100% slip
- SN_{40R} and SN_{40S} measured at start /end of ea. section
- 3 passes
- Macrotexture measured with high-speed laser
- Mean profile depth (MPD) and estimated texture depth (ETD) reported

Equipment and Testing Protocols

GripTester[™] fixed-slip tester

- Borrowed from VTTI
- V=40±2 mi/hr
- ~15% slip
- GN reported
- 5 passes per section

Equipment and Testing Protocols

CTMeter

- ASTM E 2157 for measuring macrotexture.
- 5.6 inch radius circle.
- MPD measured every 50 ft.
- 8 measurements per section.

Analysis of the Results

- Methodology
 - Friction indicators:100*GN, SN_{40R}, SN_{40S}
 - Texture indicators: CTMeter MPD, High-speed Laser
 ETD, High-speed Laser MPD
 - Cross-correlation analysis of friction/texture measurements
 - Regression analysis of correlation between friction/texture and material properties

Grip Numbers (GN), Site 090901 (typical of EB Sections)

Descriptive Statistics				
	N	Mean	Std. Deviation	
Pass 1	169	.73	.02	
Pass 2	169	.75	.02	
Pass 3	169	.75	.02	
Pass 4	172	.74	.02	
Pass 5	170	.68	.02	

- ConnDOT
 Class 1 Mix
- 12.5-mm
 Nominal
 Max Size
 Aggregate

Reason for Pass 5 Outliers?

Grip Numbers (GN), Site 090960 (typical of WB sections)

Descriptive Statistics, 090960			
	N	Mean	Std. Deviation
Pass 1	170	.57	.01
Pass 2	169	.68	.02
Pass 3	170	.67	.02
Pass 4	166	.68	.02
Pass 5	168	.62	.01

- Class 1
 ~20% RAP
- 12.5-mm
 Nominal
 Max Size
 Aggregate

Grip Numbers (GN), Pass 2

Descriptive Statistics

			Std.
	Ν	Mean	Deviation
Pass 2, Site 090901	169	.75	.022
Pass 2, Site 090902	167	.75	.016
Pass 2, Site 090903	173	.73	.018
Pass 2, Site 090960	169	.68	.019
Pass 2, Site 090961	170	.69	.018
Pass 2, Site 090962	171	.69	.013

Perhaps lower values owe to changes in microtexture as a result of 20% RAP (black rock effect)?

GN Histogram for Site 090901 Normal Distribution (Typical of Others)

High-Speed Laser and CTMeter Measurement Locations

Typical LTPP Section

High-Speed Laser Locations

High-Speed vs. Static Texture Measurements

I High-Speed MPD I High-Speed ETD I CTMeter MPD

Section		N	Moon	Std.
090901	High-Speed MPD	29	019	0017
	High-Speed ETD	29	.023	.0013
	CTMeter MPD	6	.032	.0028
090902	High-Speed MPD	30	.023	.0030
	High-Speed ETD	30	.027	.0025
	CTMeter MPD	8	.041	.0030
090903	High-Speed MPD	31	.020	.0023
	High-Speed ETD	31	.024	.0018
	CTMeter MPD	8	.036	.0030
090960	High-Speed MPD	28	.022	.0011
	High-Speed ETD	28	.026	.0010
	CTMeter MPD	8	.040	.0022
090961	High-Speed MPD	29	.040	.0040
	High-Speed ETD	29	.040	.0032
	CTMeter MPD	8	.050	.0053
090962	High-Speed MPD	30	.043	.0039
	High-Speed ETD	30	.042	.0031
	CTMeter MPD	8	.052	.0033

High-Speed ETD vs. Static MPD

Analysis of the Results Cross-Correlation

- No correlation between ribbed and smooth tire.
- Very low correlation between ribbed tire and texture (R² =0.3).

Macrotexture vs. Smooth-Tire Friction Cross-Correlation

- Good correlation between smooth tire and texture (R² = 0.8)
- Validates how smooth-tire measurements correspond with pavement macrotexture.

Analysis of the Results

Cross-Correlation (GripTester vs. ASTM E-274)

- High correlation between ribbed tire and GN (R² = 0.93)
- No correlation between GN and smooth tire (R² =0.07)
- Suggests Grip Numbers relate more to pavement microtexture, rather than macrotexture.

Conclusions

- A high correlation between FN_{40R} and GN values was found (R² = 0.93).
- No correlation between FN_{40S} and GN values was found (R² = 0.07).
- Indicates Grip Numbers relate better to microtexture than macrotexture even though a smooth tire is used.

Conclusions

- Good correlation between FN_{40S} and texture was found (R² = 0.8).
- High-speed texture measurements corresponded very well with CTMeter measurements (R² = 0.93).

Acknowledgements

- The University of Connecticut
- FHWA
- Virginia DOT
- Virginia Tech

Questions?

Thank you!

john.henault@ct.gov