

Cost Considerations of In-Place Recycling as a Pavement Rehabilitation Alternative

Brian Diefenderfer, PhD, PE Alex Apeagyei, PhD, PE

> A partnership of the **Virginia Department of Transportation** and the **University of Virginia** since 1948

Flexible Pavement Rehabilitation

- State DOT's
 - Extend service-life of pavement structures
 - Stretch available funding
- How?
 - Optimize pavement rehabilitation treatments
 - Based on available funding, other decisions, etc.
 - Seek use of innovative techniques

Flexible Pavement Rehabilitation

- Traditional methods
 - Overlay
 - Partial- and full-depth mill & replacement
- Innovative techniques
 - In-place pavement recycling
 - hot in-place
 - cold in-place
 - full-depth reclamation

FDR and CIR

- Full-depth reclamation
 - Bound layers plus a predetermined portion of the unbound materials are mixed and treated to form a stabilized base course
- Cold in-place recycling
 - Existing pavement materials (bound layers) are mixed with additives and repaved in-place without the application of heat

Full-Depth Reclamation

- Recommended for pavements with structural deterioration
 - Deep rutting
 - Full-depth cracking
 - Having deep pavement and/or base issues
- Usually performed at a depth of 10-12 inches

Potential Benefits

- Nevada DOT emphasizes the use of FDR and CIR
 - \$600 million saved over last 20 years
 - compared to traditional techniques
- MTO (Ontario) comparison to mill and overlay
 - Emits 50% less green-house gases
 - Consumes 62% less aggregates
 - Costs 40-50% less

Bemanian et al. (2006) TRR 1949 Kasmierowski (2008) presentation to AEMA-ARRA-ISSA Annual Meeting

FDR Usage

- VDOT's use of FDR has been limited
 - 3 projects in 2008 (approx. 16 lane miles)
 - 2 projects in 2010
- By comparison
 - Nevada DOT has completed 900 centerline miles of FDR since 1985
 - average >40 lane miles per year

Objective

- Explore the potential for cost savings if VDOT were to implement an FDR program on its flexible pavement network
 - Start with study on primary network and then extend to secondary network
 - Could realistic list of candidate sites be developed from typical condition-based criteria?

Methodology

- Life-cycle cost analysis
 - Present cost methodology
 - maintenance treatment assumptions
 - statewide average materials and labor cost data

– Considered two rehabilitation approaches

- partial- and full-depth mill and replacement
- partial-depth mill and replacement + FDR
- Applied to pool of potential FDR sites
 Selected based on PMS condition data

Two Approaches

Year	Partial- and full-depth mill and replacement	Partial-depth mill and replacement + FDR
12	2 inches mill & overlay	2 inches mill & overlay
22	4 inches mill & overlay	2 inches mill & overlay
32	Reconstruct (9.5 inches HMA)	2 inches mill + 8 inches FDR + 4 inches overlay
42	2 inches mill & overlay	
44		2 inches mill & overlay
50	Salvage	Salvage

Cost Assumptions

Item	Units	Cost, \$
HMA milling	SY at 2-inch depth	1.50
HMA milling	SY at 4-inch depth	3.00
HMA	Ton (110 lb/SY/inch)	70.00
FDR	SY at 8-inch depth	6.00

LCCA Assumptions

- Based on VDOT's LCCA procedure
 - Analysis period = 50 years
 - Discount rate = 4%
- Existing pavement structure
 - 8 inches of HMA over aggregate
- Layer coefficients
 - HMA = 0.44, FDR = 0.30
- Salvage value
 - Cost of previous treatment multiplied by proportion of life remaining

LCCA Results

Partial- and full-depth mill and replacement
 – \$27.30 / SY

- Partial-depth mill and replacement + FDR
 \$17.28 / SY
- Potential savings of 36%
 Consistent with results found in literature

Upon Further Review...

- Preventive maintenance?
- LCCA calls for deep mill & replacement at 32 years
 - All surface/intermediate layers
 - Not complete reconstruction
- Equivalent structural sections
 - 9.5 inch HMA = 8 inch FDR + 4 inch HMA overlay
- When all actions (but year 32) are equal
 - FDR savings = 24%

Extension to VDOT Pavement Network (Primary Routes)

- Determine initial list of FDR project sites
 - 2009 automated distress survey
- Criteria
 - 1. LDR less than 50
 - 2. Length greater than 1 mile
 - 3. Existing patched area greater than 15%
 - assumes existing patching to be a temporary repair
- Result
 - 251 lane miles at 47 sites
 - Average project = 5.3 lane miles

Extension to VDOT Pavement Network (Primary Routes)

- 251 lane miles = 1.4 million SY
- Cost over a 50-year life cycle
 - Partial- and full-depth mill and replacement
 - 1.4 million SY * \$27.30 / SY = \$38.9 million
 - Partial-depth mill and replacement + FDR
 - 1.4 million SY * \$17.28 / SY = \$24.6 million
- Potential savings of \$14 million

– Primary network only

Extension to VDOT Pavement Network

- Primary network
 - Potential savings of \$14 million
- Same criteria applied to secondary network
 - 230 lane miles at 114 sites
 - More difficult to apply same methodology
 - more variation in pavement structures
 - Savings could be of similar or greater magnitude
 - Condition survey covers only 20% of secondary network

Summary

- LCCA compared costs of pavement rehab program using traditional methods versus one that incorporated FDR
 - Present costs were 37% less
- Selection criteria applied to primary network
 - 47 potential sites, \$14 million potential savings
 - Similar economic savings over 20% of secondary network

Opportunities

- Address deep distresses
 - Normally covered up with overlays
- Ability to remove backlog of highly deteriorated pavement sections
 - Achieve longer lasting solution than overlay or mill and overlay

Next Steps?

 Decision to include in-place pavement recycling as "standard" option

- Identify best candidate locations

 Refinement of project selection criteria
- Further research
 - Consideration of environmental benefits?
 - Consideration of curing
 - design for initial or long-term conditions

Thank you!

A partnership of the **Virginia Department of Transportation** and the **University of Virginia** since 1948