Virginia Department of Transportation

Needs Based Assessment of Pavements Using Multi-Constraint Optimization

VDOT, Maintenance Division

Tanveer Chowdhury, P.E. Assistant Division Administrator

Raja Shekharan, P.E., Ph.D. Pavement Management Program Engineer

William Duke, E.I.T. Senior Pavement Management Engineer

Lutrell Gordon Senior Pavement Management Engineer

Agile Assets Inc.

Eric Perrone Principal Consultant

- Optimization is a mathematical process of choosing the best possible solution from a set of feasible alternatives
- For pavement network it involves choosing the set of treatments that typically either maximizes the benefits or minimizes the cost
- One or more constraints are applied

<u>Background –</u> Optimization Analysis

- Allows user to specify desired condition or specify budget
- Allows multiple scenario analyses
- Develop cost-effective work plans
- Identify treatment at individual section level
- Assists in budget allocation
- Multi-constraint analysis
- Multi-year analysis

<u>Background –</u> <u>PMS Project Implementation</u>

• New PMS implemented in May 2010

- Stores, retrieves and processes VDOT condition and inventory data
- Primary features of the new software:
 - Analysis of current pavement conditions
 - Pavement performance modeling and forecasting
 - Calculation of performance based needs expectations
- Two Phase Implementation

<u>PMS Project Implementation –</u> <u>Phase 1</u>

Initial data loading

- Fast system configuration
- Quick implementation of analysis tools
 - Utilized newly developed optimization system
 - VDOT needed to complete yearly analysis
- VDOT condition survey was basis for linear network
- Phase 1 Completed November 2008
- Used for Multi-Constraint optimization in 2008 and 2009
 - Needs determination
 - Treatment recommendations

PMS Project - Phase 2

- Revise all data input to obtain location referencing from VDOT RNS system
- Implement strategy based multi-year optimization tool
- Finalize major linear referencing interfaces
- System and user acceptance testing
- Go live May 2010

<u>Network Analysis –</u> <u>Requirements</u>

• VDOT Requirements

- Produce a work plan recommending treatment on section level
- Utilize existing VDOT decision processes
- Allow for use of multiple constraints
- Reduce need for multiple scenarios to account for different constraint levels
- Utilize optimization techniques

<u>Network Analysis –</u> <u>Goals for the Tool</u>

Goal: Find best set of projects to meet objective within multiple constraints

Input

VDOT

- Objective
 - Maximize benefit, minimize treatment cost, maximize condition threshold
- Constraints
 - Maintain certain average conditions
 - Meet maximum allowable deficiency targets
 - Achieve desired mix of treatments
 - Remain below required budget

Output

- Work Plan
 - Which sections to fix (WHERE)
 - Using which treatments (WHAT)
 - In which year (WHEN)
- Work plan generates all needed analysis summaries
 - expected condition, cost, benefit etc.

Maintenance Activity Categories

• Do Nothing (DN)

DOT

- Preventive Maintenance (PM)
 - Crack sealing, slurry seal
- Corrective Maintenance (CM)
 - Partial depth patching and <=2" overlay</p>
- Restorative Maintenance (RM)
 - Full depth patching and <=4" overlay</p>
- Major Rehabilitation/Reconstruction (RC)
 - Break and seat, reconstruction

<u>Network Analysis –</u> <u>Multi-Constraint</u>

• Multi-Constraint Analysis

DOT

- Integer programming optimization approach
 - All sections either "treated" (1) or "not treated" (0) in a given year
- Existing VDOT decision process determines possible treatments per section
 - Limits possible treatment selections
- Integer solver choose best set of project for a given year
- Results from one year as input for next year's analysis

<u>Network Analysis –</u> <u>Multi-Year, Multi-Constraint</u>

• Multi-Year, Multi-Constraint Analysis

DOT

- Expand multi-constraint analysis to look at treatment strategies for each section
 - Strategy: A series of treatments prescribed for a given section across all years in the analysis scope
 - VDOT decision trees still used for possible treatment selection
- Solver selects best set of strategies for entire analysis period
 - Still an integer programming optimization approach
 - A particular strategy is either applied to a specific section (1) or it is not (0)
 - Each section MUST receive a strategy, so strategy definitions are important (e.g. don't forget the "Do Nothing" strategy!)

<u>Network Analysis –</u> <u>Methods</u>

Analysis Options

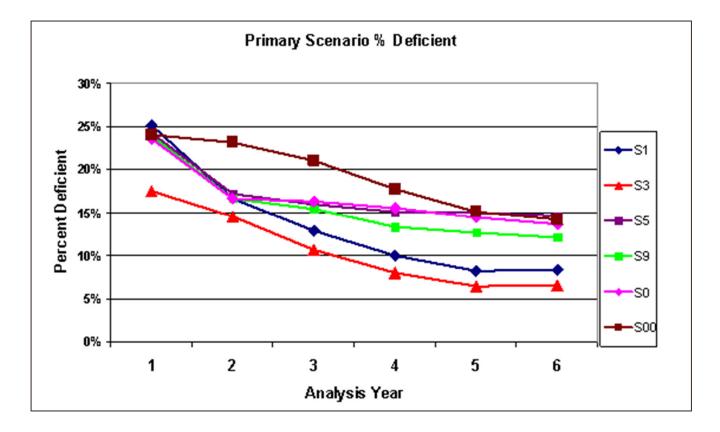
/DOT

- Available Objectives
 - Maximize benefit ("area under the curve")
 - Maximize condition indicator (wtd. avg., % above threshold, total)
 - Minimize total cost

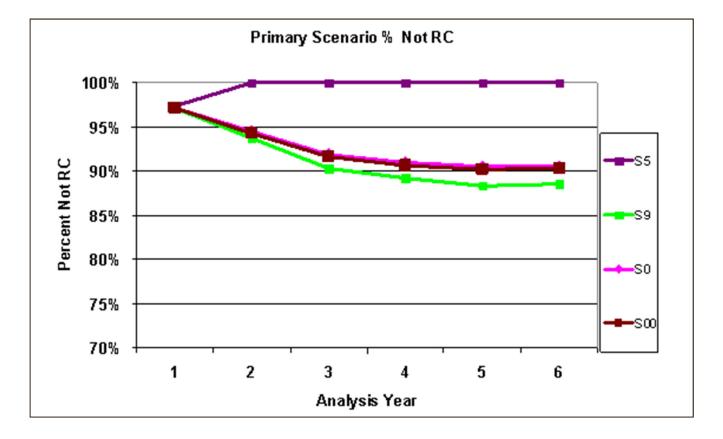
- Available Constraints

- Treatment costs (with % yearly budget variability in multi-year)
- Desired condition level (average, % above threshold, total)

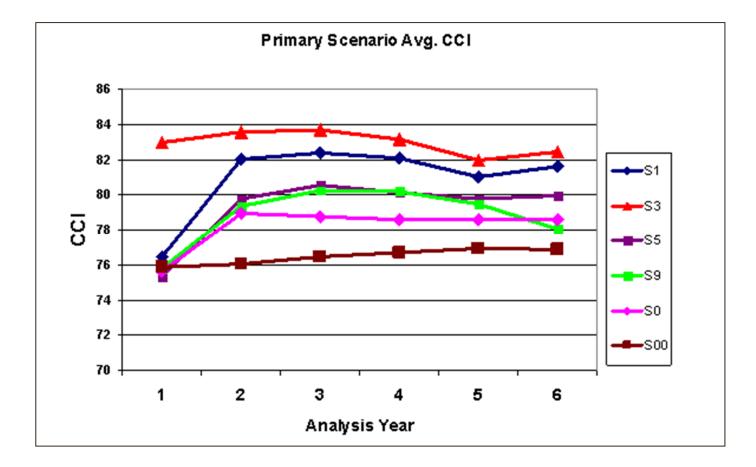
• Analysis conducted on VDOT interstate and primary pavements

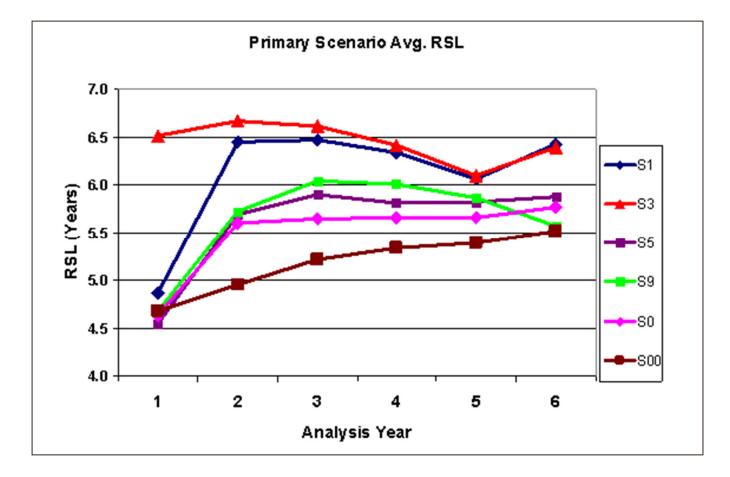

- Interstate network approximately 5,000 lane miles
- Primary network approximately 21,000 lane miles
- Condition data collected from annual surveys used for analysis

<u>Network Analysis –</u> <u>Description of Scenarios</u>


- For the purpose of the investigation, 6 optimizations were run:
 - S1: Single constraint, 6 year analysis, IS and PR
 - Objective: Maximize benefit

- Constraint: Budget constraints causing % deficient <18% by Y2
- S3: Single constraint, 6 year analysis, IS and PR
 - Objective: Maximize benefit
 - Constraint: Budget constraints causing % deficient <18% by Y1
- S5: Multiple constraints, 6 year analysis, IS and PR
 - Objective: Minimize treatment cost
 - Constraint: % deficient < 18% / % not needing RC = 100% by Y2
- S9: Multiple constraints, 6 year analysis, IS and PR
 - Objective: Minimize treatment cost
 - Constraint: % deficient < 18% by Y2 / maintain current CCI
- S0: Multiple constraints, 6 year analysis, IS and PR
 - Objective: Minimize treatment cost
 - Constraint: % deficient < 18% / % not needing RC = 90% by Y2 / maintain current CCI
- S00: Multiple constraints, 6 year analysis, PR only
 - Objective: Minimize treatment cost
 - Constraint: % deficient < 18% / % not needing RC = 90% by Y4 / maintain current CCI


<u>Network Analysis –</u> <u>Primary % Deficient</u>


<u>Network Analysis –</u> Primary % Not Needing RC

<u>Network Analysis –</u> <u>Primary Average CCI</u>

<u>Network Analysis –</u> <u>Primary Average CCI</u>

Summary

- Either single or multiple constraints can be used
- The following outputs of the analysis are determined in various years:
 - Percent deficient pavements
 - Percent of network not requiring major rehabilitation or reconstruction
 - Average CCI of the network
 - Average RSL

Lessons Learned

Realistic Constraints

- Individually and in Combination
- Targets reflect network condition
- Avoid infeasible solutions
- Monitor the Results
 - Implementable
 - VDOT and Industry Perspective
 - "Best Mix of Fixes"

Thank you