A Model for Predicting the Deterioration of the Pavement Condition Index and the Road Roughness Index

Research Summary Presentation

PREFACE

The Deterioration Models Development Research project was funded by "Netivey Israel" (NTIC) The Israeli National company for Transport Infrastructure.

NTIC Leading team:

- Mr. Shimon Nessichi Chief Scientist
- Ms. Elinor Mor Manager of the R&D department
- Mr. Vladimir Titov The department rep.
- Mr. Alex Stein Manager of the PMS department.

The Research Crew members:

- Prof. Arieh Sidess Chief research Civil Engineering, Technion
- Mr. Amnon Ravina Project manager Geokom LTD
- Mr. Eyal Oged Data Processing, editing & programming Geokom LTD

INTRODUCTION

- Netivey Israel Company (NTIC) owns and maintains a network of roads and highways in a total length of 8,300 Km (16,000 Km/Lane aprox).
- Since 2007, the company operates a PMS to manage the roads network.
- The PMS includes mapping & subdivision of the network and analysis of the data which is collected in periodical surveys.

SURVEYS INCLUDE:

Roughness (IRI) & Geometry Visual Pavement Distress (PCI) Rutting (status & follow-up) Pavement structural capacity (FWD measurements) Pavement thickness evaluation (GPR - 1 in 5 years) Friction & Texture Depth (MPD)

INTRODUCTION

- Netivey Israel Company (NTIC) owns and maintains a network of roads and highways in a total length of 8,300 Km (16,000 Km/Lane aprox).
- Since 2007, the company operates a PMS to manage the roads network.
- The PMS includes mapping & subdivision of the network and analysis of the data which is collected in periodical surveys.
- The collected data is being processed to produce a perennial maintenance work plan for the network.
- The prediction of the future pavement performance parameters is calculated using empirical deterioration coefficients of PCI & IRI.
- These parameters relied on the local experience.

THE IMPORTANCE OF THE DETERIORATION PREDICTING MODEL

- The reliability of the prediction model is significant, as the outcome directly affects the work plan over the years.
- A reliable and a correct model would be the "GOLDEN FLEECE" for the PMS, as it will allow efficient resources allocation and optimal budget usage for the network maintenance, in the correct time & place.

THE STAGES OF THE RESEARCH WORK

- 1. Literature survey & methodology consolidation.
- 2. Data mining & preparation of the database for the research.
- 3. Determination of the subdivision of the network (based on climatic diversity).
- 4. Model development & calibration.
- 5. Formulation and implementation of the computerized model into the databases & the PMS.

THE RESEARCH METHODOLOGY BASICS

• The approach for developing the deterioration models was based on the combination of the empirical-mechanistic approach and the regressive empirical approach.

MODEL DEVELOPMENT STAGES:

- Calculation of the deterioration curves of the IRI & PCI based on the models presented by Uzan et al. (2014) and Uzan (2018).
- Analysis of the actual IRI & PCI deterioration curves by regressive equations.
- Development of the **model's coefficients**, depending on the various factors related to the pavement structure, subgrade and climate zone.
- Calculation of the IRI & PCI deterioration curves based on models & comparison of the <u>calculated</u> results to the <u>measured</u> data.
- Calibration of the models, when necessary.

THE RESEARCH METHODOLOGY BASICS

- The approach for developing the deterioration models was based on the combination of the empirical-mechanistic approach and the regressive empirical approach.
- Subdivision of the Network into 3 climate zones, based on analysis of the impact of the climatic parameters on the deterioration rate.

THE IMPACT OF THE ENVIRONMENT:

- The analysis was based on the data collected in the **PRS** project (Uzan, J., (2012), Uzan, J., (2015))
- The PRS project introduced the calculation of the development of the fatigue & the rutting distresses in the pavements, in various climate zones.
- The analysis of the impact from the geographically varied stations led to the conclusion that the data can be divided into **three main sections**.

THE RESEARCH METHODOLOGY BASICS

- The approach for developing the deterioration models was based on the combination of the empirical-mechanistic approach and the regressive empirical approach.
- Subdivision of the Network into 3 climate zones, based on analysis of the impact of the environmental parameters on the deterioration rate.

NETWORK CLIMATE ZONES: *North *Center

South (including the Rift Valley)

THE DETERIORATION MODEL FOR PCI

• The following equation, expresses the deterioration model which was adopted for the PCI :

$$PCI(t) = PCI_0 - (PCI_0 - PCI_f) \bullet \left(\frac{W_t}{\rho}\right)^{\mu}$$

Where:

- **PCI**(t) PCI at time t (years, months, etc.).
- $\mathbf{PCI}_{\mathbf{0}}$ initial PCI after construction or rehabilitation.
- $\mathbf{PCI}_{\mathbf{f}}$ PCI at failure.
- W_t cumulative number of 130 kN ESAL applied until time t.
- β, ρ regression coefficients dependent on the pavement parameters and environmental variables.

THE DETERIORATION MODEL FOR PCI

• The deterioration model which was adopted for the PCI is expressed in the equation:

$$PCI(t) = PCI_0 - (PCI_0 - PCI_f) \bullet \left(\frac{W_t}{\rho}\right)^{\rho}$$

• As $PCI_0 = 100$ and $PCI_f = 25$, the equation is expressed as follows:

$$PCI(t) = 100 - 75 \bullet \left(\frac{W_t}{\rho}\right)^{\beta}$$

Where:	
PCI (t)	– PCI at time
PCI ₀	– initial PCI
PCI _f	– PCI at failure.
W _t	– cumulative 130 kN ESAL
β, ρ	- regression coefficients

CALIBRATING THE MODEL FOR PCI

$$PCI(t) = PCI_0 - (PCI_0 - PCI_f) \bullet \left(\frac{W_t}{\rho}\right)^{\beta} \qquad PCI(t) = 100 - 75 \bullet \left(\frac{W_t}{\rho}\right)^{\beta}$$

• The coefficients β and ρ may be calculated by the optimization of the PCI deterioration curves dependent on the parameters that characterize the pavement and environmental variables as follows:

$$\rho, \beta = f(E_s, SN, T_A, R)$$

Where:

- **E**_S Subgrade modulus
- **SN** Structural number of the pavement
- T_A Asphalt layer thickness
- **R** A coefficient depending on environmental variables

MODEL FOR PCI - DEVELOPMENT & VALIDATION

To apply the model into the NTIC network & to implement it on all the roads, further model's developments were performed, including:

- Development of an algorithm to adjust for the traffic load History.
- Calculation of secondary deterioration coefficients for each geographical zone.

Validation

The predicted results were compared with actual survey data of more than 200 road sections, with varied pavement characteristics & in different climatic zones

An example of the PCI deterioration curve & Model calibration

Comparing PCI calculated curve to measured points – New pavement

Comparing PCI calculated curve to measured points – New pavement

Comparing PCI calculated curve to measured points – New pavement

Comparing PCI calculated curve to measured points – Disturbed pavement

Comparing PCI calculated curve to measured points – Rehabilitated pavement

Measured vs. predicted PCI for various road sections (new pavements)

Measured vs. predicted PCI for various road sections (Load history pavements)

DETERIORATION MODEL FOR IRI

• The deterioration model which was adopted for the IRI is expressed in the equation :

 $IRI(t) = IRI_0 + K \bullet (W_t)^{\gamma}$

Where:

IRI(t) – IRI at time - t (months, years, etc.), m/km.

- **IRI**₀ initial IRI after construction or rehabilitation, m/km.
- W_t cumulative number of 130 kN ESAL applied until time t.
- **K**, γ regression coefficients dependent on the pavement parameters and climatic variables.

DETERIORATION MODEL FOR IRI

• The deterioration model which was adopted for the IRI is expressed in the equation:

 $IRI(t) = IRI_0 + K \bullet (W_t)^{\gamma}$

• The IRI of a pavement after construction or rehabilitation - IRI₀ is set to 1.10 m/km (*Uzan et al. 2014*), Thus the equation may be expressed as follows:

 $IRI(t) = 1.10 + K \bullet (W_t)^{\gamma}$

Where:	
IRI(t)	– IRI at time
IRI ₀	– initial IRI
W _t	– cumulative 130 kN ESAL
Κ, γ	– regression coefficients

CALIBRATING & VALIDATING THE MODEL FOR IRI

$IRI(t) = IRI_0 + K \bullet (W_t)^{\gamma} \qquad IRI(t) = 1.10 + K \bullet (W_t)^{\gamma}$

The coefficients K and γ may be calculated by the optimization of the IRI deterioration curves dependent on the parameters that characterize the pavement and environmental variables as follows:

 $K, \ \gamma = f(E_s, SN, T_A, R)$

Where:

- **E**_S Subgrade modulus
- **SN** Structural number of the pavement
- T_A Asphalt layer thickness
- **R** A coefficient depending on climatic variables

An example of the IRI deterioration curve & Model calibration

Comparing IRI calculated curve to measured points – In Service pavement

Comparing IRI calculated curve to measured points – In service pavement

Comparing IRI calculated curve to measured points – Rehabilitated pavement

Measured vs. predicted IRI for various road sections (new pavements)

THE FRUITS OF THE RESEARCH

- The model is about to be embedded in the NTIC's PMS
- The new model will improve the prediction of the pavement performance and as a result it will improve maintenance budget planning.
- The utilization of the model can offer a comparison of design alternatives. The authorities in- charge can use varied considerations to strengthen the pavement and to reduce the maintenance budget in return.
- The model may assists enterprisers to evaluate the pavements performance in BOT & PPP Projects.
- The model enables the assessment of the pavement performance at the end of warranty period of new & rehabilitated pavements.

- The research presents a methodology for developing a deterioration model of the Roughness index – IRI & Pavement Condition Index - PCI.
- The methodology is based on the combination of the empirical-mechanistic and regressive empirical approach.
- The model's coefficients can be calculated depending on the pavement parameters environmental variables.
- Comparison of the predicted and measured results show very good match. Most of the results are within the measurement and interpretation error range.
- The good match enables the adoption of the methodology in Netivey Israel (NTIC) Pavement Management System (PMS).

A Model for Predicting the Deterioration of the Pavement Condition Index and the Road Roughness Index

THANK YOU FOR YOUR ATTENTION

REFERENCES

- AASHTO, 1993. AASHTO Guide for Design of Pavements Structures, American Association of State Highway and Transportation Officials, Washington, DC.
- Uzan, J., Nesichi, S., and Weinstein, N., 2014. A simplified flexible pavement guide with analytical reliability analysis, In: Y. R. Kim, ed. *Proceedings of the 12th Conference of the Int. Soc. For Asphalt Pavements*, 1-5 June 2014 USA. Raleigh, NC: CRC Press, 2, 1851-1860.
- Uzan, J., 2018. Advancing the design and construction quality control of flexible pavements. *International Journal of Pavement Engineering*, 19 (2), 164-173.

A Model for Predicting the Deterioration of the Pavement Condition Index and the Road Roughness Index

Research Summery Presentation

