

Using TSD measurements to estimate the pavement strains under a moving load

By Christoffer P. Nielsen*

Greenwood Engineering A/S

Pavement damage

Horizontal strain

Estimate from surface response

Strains cause damage in the pavement

- Horizontal strain in asphalt layer \rightarrow fatigue cracking
- Vertical strain in subgrade \rightarrow rutting
- Shear strain in asphalt \rightarrow rutting

Traditional approach: FWD

A few issues

- FWD is slow
 - Costly
 - Disrupts traffic
 - Safety hazard
- Point measurements
 - May miss important features
- Impulsive load
 - How do the results relate to a moving load?

The Traffic Speed Deflectometer

- Measures pavement response to a moving load
 - Continuous measurement
 - At traffic speed 1 km/h 90 km/h
- Uses laser Doppler vibrometers to measure pavement response

GREENWOOD ENGINEERING

Estimating pavement strains from surface response

Asphalt complex modulus

$$E(\omega) = E_0 + \frac{E_\infty - E_0}{1 + \delta(i\omega\tau)^{-k} + (i\omega\tau)^{-h}}$$

Visco-elastic back-calculation of TSD measurements, Nielsen 2019, TRR

Visco-elastic deflection basin

Measurement examples

Road near Copenhagen. Three runs.

Back-calculation of TSD measurements

Strain estimates

Longitudinal tensile strain

Identify maximum strain

Tensile strain in bottom of asphalt layer

Vertical strains in top of base layer and subgrade

Strains under actual moving load

Measurement of response to moving load

Direct estimation of strains

Rutting strain transfer function

Look at transfer function between w and ϵ_{zz} in Hankel domain

PE 2019

-3

-100

-200 [m/mrf] -300

-400

-500

Representative transfer function

Smaller reporting intervals

- Localized defects might not be visible in 10 m averages
- New sensors allow us to export in 1 m sections
- Damage ~ $\epsilon_{xx}^4 \propto (SCI_{300})^4$

PE 2019

 Section will fail 8 times faster than expected from 10 m averages (and 160 times faster than expected from point measurements with 50 m spacing)

Surface curvature index

Summary and conclusion

- Visco-elastic back-calculation at network level
- Strains under moving load

PE 2019

- Usable indices directly from slopes
- 1 meter data allows local defects to be identified

Distance [m]

