Implementation of the Traffic Speed Deflectometer (TSD) for Network Level Pavement Management

by
Ken Maser, Infrasense
Pete Schmalzer, Nevada DOT (formerly NCE)
Aaron Gerber, Kercher Group
Jim Poorbaugh, Idaho Trans. Dept.

Pavement Evaluation, 2019
Roanoke, VA
Background

• Current PMS are based on surface distress
 - Continuous distress survey systems are available
• Remaining life depends on roadway structure
 - Below the surface
• TSD can now provide continuous roadway deflection data
 - Over 200 miles per day/no closures
• GPR provides continuous layer structure data
• Combination can produce layer mechanical properties for roadway structural analysis
Idaho Pilot Project

• Develop a more effective strategy for project selection and design
• Use TSD deflection data with GPR layer thickness data to calculate pavement structure properties
• Publish the data as a geospatial database usable to a wide audience
• Demonstrate the use of the data at both network and project levels
Pilot Project – Idaho District 6
2015 - 2017

1035 total miles of roadway
168 miles Interstate
867 miles primary roads
Data Collection

- TSD continuous at 10m and 0.01 mi. intervals
 - Provides deflection slope at various offsets from load
- FWD data in select areas for comparison
- Ground Penetrating Radar (GPR)
 - 1 GHz Horn Antenna, continuous at 1 foot intervals
- Selective coring for layer structure clarification
Raw TSD Measurements

Deflection Slope = \(\frac{V_v}{V_H} \)

not to scale
GPR Thickness Data Analysis
Data Analysis Calculations

1. Deflections (from TSD slopes)
2. Layer Thickness (GPR)
3. Layer Moduli (steps 1+ 2 using Evercalc)
4. Effective Structural Number (2 + 3)
5. Required Structural Number for 20-year life (3 + W_{18})
6. Required Overlay Thickness (from 5)
7. Remaining Service Life (from 3, 4, and W_{18})
TSD vs. FWD – Maximum Deflection (D0)

Deflection (mils)

Station (m)

TSD 0 Meter Sensor
FWD 0 Inch Sensor
TSD vs. FWD – Subgrade Modulus (M_R)

![Graph showing subgrade modulus comparison between TSD and FWD at various stations (m).]
Segmentation and Remaining Life (SH 28)
Roadway Structure GeoDatabase

• Data is recorded in a series of tables
• Data is displayed spatially using ArcGIS
• Database is accessible through iPLAN
 • [Link](http://iplan.maps.arcgis.com/apps/webappviewer/index.html?id=8099d313c7ac45119d44af98eeb98dfe)
Segmented Remaining Life (years)
Segmented Remaining Life (years)
US-28 Project-Level Segment Analysis

Remaining Life
US-28 Project-Level Segment Analysis

Remaining Life

Structural Number
US-28 Project-Level Segment Analysis

Remaining Life

Structural Number

Subgrade Modulus, M_r
Use of Structure Data in Pavement Management

• Incorporate Data into PMS database
 - (ITD TAMS uses Agile Assets)

• Decision Rules - Add structure parameters to supplement surface distress

• Performance Curves - modify existing curves using structure data
Typical PMS Decision Rule

• Distress index based on fatigue cracking, patching, and edge cracking

Flexible Distress Index (DI) Decision Tree

- **DI < 25**
 Treatment = Reconstruction

- **25 <= DI < 40**
 Treatment = Rehabilitation

- **40 <= DI < 60**
 Treatment = Restoration

- **60 <= DI < 75**
 Treatment = Resurfacing

- **DI > 75**
 Treatment = No treatment
Add Structural Capacity Decision Tree

- Add Decision Rules based on Required Overlay Thickness (OL) and subgrade modulus Mr
TSD Roadway Structure Data in PMS

- Standard Performance Curves

![Flexible Pavement Performance Models](image-url)
TSD Roadway Structure Data in PMS

• Modified Performance Curves
Life-Cycle Simulation for 217 Segments

• Evaluate decisions and resource allocation
 1. Treatment options using surface distress only
 2. Treatment options adding structure data to the treatment decision trees

• Compare the two over a 50-year life cycle

• Examine the benefit
Life Cycle Modeling per Pavement Segment
50 year ‘Network’ Life Cycle Results
217 sections (735 miles) analyzed

Benefit
- Est. Cost Savings Using Structure Data: $15,572,100
- $15,572,100/735 miles = $21,186/mile over 50 years

Cost/Benefit
- If ITD collects this data every 5 years, then:
 - $21,186/10 = $2,118/mile per rating cycle in savings
- Assume data collection cost is $300/mile
- Return on Investment (ROI) = $2,118/$300 = ~7
Summary of TSD + GPR

• Combination of TSD and GPR has been demonstrated for determining network-level roadway structure data
• Process has been completed on over 1000 miles of roadway
• Resulting data is available via a statewide geodatabase
• Results support network overview and project planning
• Use of results in PMS can produce significant cost savings
• These results will be extended statewide using additional TSD data provided by the pooled fund study