

Compaction Quality Assurance of Geomaterials Using the Light Weight Deflectometer

By

Sadaf Khosravifar, PhD, PE

Dynatest North America, Inc.

Acknowledgement

Research Team at University of Maryland

Professor Charles W. Schwartz Niosha Afsharikia, PhD

Undergraduate Assistants Nicolas Alvarez Christopher Platt Ben Geerstma Yunpeng Zhao Gregory Koepping Ramiz Vatan Mateus Coelho Marcus Watson

LWD Providers Dynatest, Zorn, Olson

Material Providers Luck Stone PE 2019

Technical Advisory Committee of TPF 5(285) Maryland SHA (lead agency)

Technical Director
Administration

Dan Sajedi Rodney Wynn

FHWA

Technical Liaison DelMar Division Michael Arasteh Azmat Hussain

Sponsoring Agencies

Florida Michigan Missouri New York North Carolina South Carolina Virginia

Others

Minnesota Indiana David Horhota David Gauthier John Donahue Brett Dening K.J. Kim Jesse Thompson Shabbir Hossain

John Siekmeier Nayyar Zia Siddiki

Introduction

- First Light Weight Deflectometers (LWD) date back to the early 1970's
- Specifically designed for unbound or lightly bounded pavement layers
- In-situ tool for measuring Surface Stiffness

What can be determined from the Dynatest LWD?

- Surface Modulus
- Determine the Non-linearity
- Calculate the modulus of 2 layers
 - with Dual Plate System (DPS) and additional geophones
- Calculate overlay
- Determine layer thickness
- Quality Control/Quality Assurance (QC/QA)

Why LWD for Compaction QA

- Reflects engineering properties of material
- Avoid nuclear QC/QA methods
- Better testing of stabilized materials

Key Issues for LWD-based Compaction QA

Stress effects

Confining stress stiffening effects on M_R Deviator stress softening effects on M_R

Moisture effects

Compaction moisture effects on M_R Drying profile history (limited time duration) Drying (post-compaction moisture) effects on M_R (stiffening)

Layered system

Subgrade only Stiff base over soft subgrade Stiff base over stiff subgrade

Individual LWD device details

Plate diameter Plate rigidity Contact area stress distribution Loading rate Deflection measurement type and location(s)

Moisture measurement devices Reliability Speed in giving the results

What is an Ideal Modulus-Based Specification

- 1) Smooth transition from density-based methods to modulus-based QC/QA
- 2) Applicability to a variety of geomaterials
- 3) Cost efficient for organizational implementation
- 4) Based on field moisture and modulus measurements immediately after placement
- 5) Easy-to-determine target modulus values

FHWA Transportation Pooled Fund Study (TPF 5-285) LWD testing on Proctor molds

FHWA TPF 5-285 LWD - Proctor Method

PE 2019

Lab

Field

FHWA TPF 5-285 LWD - Proctor Method

1- Laboratory Determination of Target Modulus Using LWD drops on Compacted Proctor Mold:

- Sample preparation
- Testing procedure
- Determination of optimum MC
- Determination of target E_{LWD_Target}
- 2- Compaction Quality Control Using LWD
- In-situ LWD testing procedure
- In-situ LWD testing frequency
- In situ MC testing
- Adjustment of E_{LWD_Target} for two-layer systems
- Evaluation of in situ MC for acceptance
- Evaluation of $E_{LWD_Field}/E_{LWD_Target}$ for acceptance

- 1.1. This test method describes the procedure to assess the compaction quality of a road base or subgrade by comparing the field's surface moduli to the lab determined target moduli using a Light Weight Deflectometer (LWD).
- 1.2. The same LWD type in terms of brand name, buffer stiffness, and deflection measurement location (on top of the plate or on top of the soil layer) as the lab target modulus testing must be used during the field testing, to exclude any disagreement between devices' measurements. Applicable to LWDs manufactured by Zorn, Dynatest, Olson Instruments.
- 1.3. This procedure shall be performed right after compaction to eliminate the effect of

LWD TESTING IN FIELD (SEMI-INFINITE)

 $E_o = \frac{f(1 - v^2)\sigma_o r_o}{d_o} + \text{Determination of Moisture Content}$

 E_o = Surface LWD modulus f = Stress Distribution Factor v = Poisson's Ratio σ_o = Peak Stress Under the Plate r_o = radius of the LWD plate d_o = Peak Center Deflection

f=Parabolic– for flexible soil-plate system *f*=8/3

f= Uniform– for semi-flexible soil-plate *f*=2

f= Inverse Parabolic– for rigid soil-plate system *f*=*pi*/2

Target Modulus for 1-Layer System

$$E = (1 - \frac{2v^2}{1 - v}) \frac{4H}{\pi D^2} k_s \qquad k_s = \left| \frac{F_{peak}}{w_{peak}} \right|$$

Drop height: Adjusted to Achieve the **SAME** Pressure as in Field

~4.16 in for 95.25 kPa

Condition: Confined compression

	Plate size	P/Pa	Р	Force	Drop Height
	[inch]	-	[kPa]	[kN]	[inch]
Field LWD	12	0.94	95.25	6.73	33.00
Lab LWD	6	0.94	95.25	1.68	4.16

Plate Diameter (D)= 150 mm

Corrected Target Modulus for 2-Layer System

 $E_{surface-Corrected Target} = 1$

E₁ Base

Target from LWD on Mold

in which:

h

- E_1 = Target modulus of the top layer (GAB, base, etc.) \rightarrow from LWD on Mold
- E₂ = surface modulus of the underlying layer (subgrade, fill, subbase, etc.)
- h = thickness of the top layer
- $r_0 = D/2 = radius of the LWD plate$

Dynatest LWD and App

Rubber Buffer

Base for Load Cell

150mm Loading Plate 300mm Loading Plate

Mechanism for Geophone Centering

Easy setting of the desired drop height Movable release handle Laser engraved scale on the shaft

Easy Switch between Plate Sizes w DPS 6 in Diameter for Lab 12 in Diameter for Field

Field (half-space)				
Poisson's Ratio v				
0.35				
Stress Distribution f				
2	G			

Lab (Proctor mold)	\odot
Poisson's Ratio v	
0.35	
Mold Height H	
114	mm

Dynatest LWD and App

Dynatest LWD and App

20

[ms]

Compaction

40

60

1

Images

12:34 7 Search		LTE 💼
Locations Compa	action	æ
Deflection Passed	32.89 %	í
Delta Deflection	2.47 %	i

Evaluated sites-TPF 5-285

	Location	Soil Type	AASHTO Classification	Unified Classification		
1	Virginia	Subgrade	A-3	SP-SM	Poorly graded sand with silt	
2	Maryland	MD5 Waste contaminated embankment	A-1-a	SW	Well graded sand with gravel	
3		MD5 Subgrade	A-2-7	SP	Poorly graded sand with gravel	
4		MD337, Deep GAB	A-2-7	GW-GM	Well graded gravel with silt and sand	
5		MD404 sand overlaying Subgrade	A-2-7	SP	Poorly graded sand	
6		MD404 Subgrade	A-2-6	SP	Poorly graded sand	
7		MD404 GAB	A-2-7	GP-GM	Poorly graded gravel with silt and sand	
8	New York	Embankment	A-3	SP	Poorly graded sand	
9		Cement modified Subgrade	A-2-4	SW	Well graded sand with gravel	
10	Indiana	Virgin Subgrade	A-2-4	SW-SM	Well graded sand with silt and gravel	
11		GAB	A-1-a	GW	Well graded gravel with sand	
12	Missouri	Subgrade	A-3	SP	Poorly graded sand with gravel	
13		Base	A-3	GW	Well graded gravel with sand	
14	Florida	Subgrade	A-2-7	SP	Poorly graded sand	
15		Base	A-3	SP	Poorly graded gravel with sand	

Evaluated sites- Maryland Follow-up Study

LWD based Compaction QA Results

LWD based Compaction QA Results

FHWA TPF 5-285 LWD - Proctor Method

- Target Modulus defined using LWD testing on Proctor Mold
- Uses existing contractors/agency equipment
- Accounts for moisture variation
- Accounts for stress levels
- Accounts for pavement structure
- Bridges the gap between QC and Design
- Simple and requires some degree of expertise
- The Compaction Module in the **Dynatest** app makes the process easy

Contact Information

Sadaf Khosravifar, PhD, PE Dynatest North America, Inc Cell: +1 530-531-5030 sadaf@dynatest.com

Niosha Afasharikia, PhD Wood Plc Niosha.afshar@woodplc.com

Professor Charles W. Schwartz University of Maryland <u>schwartz@umd.edu</u>

