Joint Pursuit: Detecting Weak Joints Using TSD Measurements by Basis Pursuit

By
Samer Katicha
Virginia Tech Transportation Institute
Outline

• Introduction
• Basis Pursuit
• Results
• Further Improvements
Introduction

• TSD has been extensively used for flexible pavement structural evaluation

• Rigid pavements have been harder to assess:
 • Low deflections are an issue relative to device accuracy
 • Joint evaluation requires higher data resolution (~1m)

• Limited research on joint evaluation:
 • SHRP2 R06(F)
 • United Kingdom
 • Wavelet analysis (Katicha et al. 2014, 2016)
Introduction – Joints LTE
Introduction – Joints LTE
Introduction – Typical TSD Measurements
Introduction – Repeated Measurements
Basis Pursuit - Overview

• Help identify weak joints
 • Fast
 • Statistical balance between wrong identifications and missed identifications
 • Standard procedure (more science, less art)

• Key idea
 • Decompose TSD measurements into sum of simple features
 • Weak joints have specific geometric feature
Basis Pursuit - Features

Wavelets

Joints
Basis Pursuit – Feature Selection

• How are features selected
 • Have twice as many features as measurements

• Best subset selection
 • Lowest number of features that works
 • Very hard (impossible) to solve

• Basis Pursuit selection
 • Lowest sum of absolute values of features coefficient
 • Very easy to solve (as easy as linear regression)
Basis Pursuit – Geometric Interpretation

- Fit feature to measurements by regression (y are the measurements and x are the features)
Results – Threshold Effect
Results – Threshold Selection

• Threshold
 • Need measurement accuracy of TSD σ
 • Upper limit $T=\sigma\sqrt{2\log(n)}\approx 4\sigma$ (universal threshold)
 • Optimal: minimize Stein’s Unbiased Risk Estimate (SURE)
 • Can go lower than 4σ depending on number of weak joints
 • Best fit
Results – Best Fit with SURE
Results – Detected Joints
Results – Universal Threshold
Results – Detected Joints
Results – Repeated Measurements
Multiresolution – Weak Joints Grouping
Multiresolution – Benefits

• Why?
• Detection depends on the number of weak joints in the group
 • \(\sigma \sqrt{2 \log(n)} \approx 4 \sigma \) order of detection limit for individual joints
 • If we have \(k \) joints in a group
 • \(\sigma \sqrt{\frac{2 \log(n)}{k}} \)
Multiresolution – Example
Multiresolution – Example Solution

Multiresolution

No multiresolution
SparseNet
SparseNet – Universal Threshold