

Damage Assessment of Existing Asphalt Pavements for Mechanistic-Empirical Rehabilitation Design in Virginia: a Hybrid Approach

By: Jhony Habbouche, Ph.D.

Harikrishnan Nair, Ph.D., P.E.

Virginia Transportation Research Council Charlottesville, VA, 22903

Presentation Outline

- Introduction
- Problem Statement
- Objectives and Scope of Work
- Experimental Plan
- MEPDG Approach
- HYBRID Approach
- Pavement Rehabilitation Analysis
- Summary of Findings, Conclusions, & Recommendations

PE 2019

Introduction

- Many State Highway Agencies are currently in the process of implementing Pavement ME to design their flexible pavements.
- VDOT implemented Pavement ME for the design of new construction and reconstruction projects.
- Currently, on-going research is evaluating the use of Pavement ME for the design of rehabilitated flexible pavements in Virginia.

Introduction (Cont'd)

Pavement ME Hierarchical System:

- <u>Level 1</u>: most implementable procedure available; involves comprehensive laboratory and / or field tests.
- <u>Level 2</u>: inputs estimated through correlations with other material properties that are measured in the laboratory and / or the field.
- <u>Level 3</u>: estimates the most appropriate design input value of the material property based on experience with little or no testing.

Problem Statement

 Major step in the rehabilitation design using Pavement ME is the <u>damage assessment</u> in the existing AC pavement.

 Damage is computed as function of <u>undamaged dynamic</u> <u>modulus</u> (Witczak model) and <u>damaged dynamic modulus</u> (FWD Testing).

→ Potential of damage overestimation !!!

Problem Statement (Cont'd)

• Limitations of the Pavement ME software:

→ The <u>Witczak model</u> is mandated for the estimation of <u>undamaged dynamic modulus</u> of the existing layer.

 \rightarrow The regression constants for the Witczak prediction model cannot be modified in the current version of the software.

Objectives and Scope of Work

• Assess the use of Level 1 analysis for M-E rehabilitation designs of deteriorated AC pavements in Virginia.

• Explore the possible implementation of a *HYBRID* approach for AC damage characterization to overcome the challenges of using Witczak prediction model.

Case Study: Route 60

- From Red Rd (Rt 630E/W), Buckingham County to White Pine Ln, Cumberland County (L=5.42 mi)
- Two-way AADTT = 176 trucks
- Two lanes: 1 lane in design direction
- Operational speed = 55 mph

PE 2019

SM-12.5D; 2.0 inch SM-9.5D: 1.6 inch

BM-25.0A; 4.7 inch

Aggergate Base 21A; 6.0 inch

Subgrade

Undamaged Dynamic Modulus: Witczak Model

Undamaged Dynamic Modulus: Witczak Model

Damaged Dynamic Modulus: FWD Testing

PE 2019

- Should existing AC layers be characterized separately?
- Can the AC layers be separated during the FWD analysis?
- How existing AC layers will be modeled in Pavement ME?

Modulus of existing AC layer obtained from FWD testing				
FWD Modulus (ksi) Frequency (Hz)		Temperature (°F)		
750	15	88		

Damage Characterization Based on MEPDG Approach (Estimation of FC Damage)

Undamaged Dynamic Modulus: E* Testing of Cores

PE 2019

Damage Characterization Based on HYBRID Approach (Estimation of FC Damage)

FC Damage Characterization: *MEPDG* vs. *Hybrid* Approach

• Estimated Damage **d**_{AC}:

□ Using Witczak model E*(undamaged) & FWD E*(damaged): 2.07

□ Using E*(undamaged) of cores tested in the lab & FWD E*(damaged): 0.9

Percent Alligator Cracking: *MEPDG* vs. *Hybrid* Approach

$$FC_{Bottom} = \left(\frac{1}{60}\right) * \left(\frac{C_4}{1 + e^{(C_1 * C_1^* + C_2 * C_2^* * \log(d_{AC-Bot} * 100))}}\right)$$

- FC_{Bottom} = Area of alligator cracking, % of total lane area;
- d_{AC-Bot} = cumulative damage index at the bottom of AC layer;
- $C_1 = 0.8$; $C_2 = 0.8$; and $C_4 = 6000$
- C*1=-2*C*2
- C*₂=-2.40874-39.748*(1+h_{AC})^(-2.856)

	Parameters / Approach	MEPDG	HYBRID	PMS Data (2014)
	Damage d _{AC}	2.07	0.9	0.7
PE 2019	Area of Alligator Cracking	65.2%	(47.9%	42.2%

Pavement Rehabilitation Analysis

Findings & Conclusions

- *Higher damage characterization* was observed for the existing AC layer(s) when the Witczak model and FWD backcalculated data were used for undamaged and damaged E*, respectively.
- Reasonable results for damage were observed when estimated using the measured undamaged E* on cores combined with damaged E* from FWD backcalculation.
- The implementation of the *Hybrid* approach in the Pavement ME design software requires the use of a *combination of Level 1 and Level 2 data inputs*.

Recommendations: Hybrid Approach

Step 1 – FWD Testing RWP Before Rehab

Step 2 – Backcalculation Analysis Damaged AC Modulus E_{FWD_Damaged}

> Step 3 – Core Sampling BWP Before Rehab

Step 4 – Witczak E*_{Undamaged} Core properties (e.g., binder content, A-VTS, aggregate gradation, etc...)

PE 2019

Step 8 – Pavement ME Analysis Existing AC layer(s), Level 2 (using outcomes of Step 4 & 6)

Step 7 – %FC Calculation Using the damage in Step 6 & locally calibrated transfer function

Step 6 – Damage Characterization $E_{FWD_Damaged}$ (Step 2) Vs. Lab E*_{Undamaged} (Step 5)

Step 5 –Lab E*_{Undamaged} Core Testing Following AASHTO TP79

Acknowledgments

- Virginia Department of Transportation (VDOT)
- Virginia Transportation Research Council (VTRC)

Thank You! Questions?!

Email: Jhony.habbouche@vdot.virginia.gov

PE 2019