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Fugro Roadware

= Founded in 1969
1st fully integrated road data collection vehicle (ARAN) in 1980
= 2019

= 56 ARANSs operating in 18 countries

= Over 10 Million miles of ARAN roadway data to date

= Over 500 Thousand miles of ARAN roadway data each year
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Overview

Why develop crack detection algorithms?
« Automation increases value of pavement data:
* Less human intervention = less subjectivity = more dependable results
» Faster results = more time to use the data = better decisions
» Current automated algorithms aren’t good enough

Why Machine Learning?
« Rapidly improving field
+ Excellent at solving complex problems with unstructured data

Why us?
« We have 50 years of experience in pavement condition analysis
« We have a lot of accessible pavement data = 3 PetaBytes = 2 Million Miles
« ..and it is already annotated
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Pave3DX Stereoscopic Imaging and Measurement
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Tmm Lines Combined into Image Frames
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2 Images from different angles

Image 1 (Left) Image 2 (Right)
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Combine Stereo Images

3D Model
Depth Image

3D Point Cloud
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Pave3DX + WiseCrax Processing Pipeline
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Crack Detection
Transverse Profile
Longitudinal Profile
Rut Depth
Pothole Detection

Surface Texture



WiseCrax Detection Pipeline

Noise removal (autoencoder) Image tiles Keras

—  Supervised ~__
ML
— model

v

—* Unsupervised

. dWs

Roadware Vision
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LeNet-5 — A Classic CNN Architecture
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http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Convolution Operation
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Source: http://cs231n.qithub.io/convolutional-networks/
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http://cs231n.github.io/convolutional-networks/
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https://arxiv.org/pdf/1505.04597.pdf

U-Net: Convolutional Networks
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=» conv 3x3, RelLU
= copy and crop

§ max pool 2x2

4 up-conv 2x2
=» conv 1x1


https://arxiv.org/pdf/1505.04597.pdf

Data Augmentation

» Generate batches of image data with real-time data augmentation
« The data will be looped over (in batches)

« 250,000 images as Data Augmentation

« Transformations applied:
Rotation
Flip

Gaussian Noise

O

O

o Translation
O

o Scale

O

Mirroring
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Measure similarity between two images:

Modified Pixel-wise-based Method

D Target Detected

. Background Detected

(a) Ground Truth (b) Detection Result (c) Detection Performance

1. Introduce buffer regions by applying erosion on the original crack map
2. Convert the 'thick crack line' to 1-pixel-wide crack line using Skeletonization

Accuracy = Skeleton of TP / Skeleton of Union
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Detection Performance Definitions

Something
Detected _
_ Actually is Result
Something
There

True Positive YES YES GOOD
True Negative NO NO GOOD
False Positive YES NO BAD
False Negative NO YES BAD
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Crack Detection Metrics - Precision

True Positive

Precision =

True Positive+False Positive

True Positive

" Total Predicted Positive

Predicted

Average : 0.909

Negative Positive

Negative
Actual g

True Negative False Positive

Positive

False Negative True Positive
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Crack Detection Metrics - Recall

Recall = Irue Positive Average : 0.999
True Positive+False Negative
_ True Positive
" Total Actual Positive
Predicted
Negative Positive
Negative True Negative False Positive
Actual
Positive False Negative True Positive

18 | Pavement Distress Detection Using Advanced Machine Learning Methods with Intensity and Depth Data



Crack Detection Metrics — F1 Score

Precision=Recall

F1=2xX

Precision+Recall
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Example 1 - Real Image
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Example 1 - Depth Image

21 | Pavement Distress Detection Using Advanced Machine Learning Methods with Intensity and Depth Data




Example 1 - Crack Detection
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Example 2 — Real Image
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Example 2 — Depth Image
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Example 2 — Crack Detection
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Example 3 — Real Image
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Example 3 — Depth Image
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Example 3 - Crack Detection
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Example 4 — Real Image
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Example 4 — Depth Image
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Example 4 — Crack Detection
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Example 5 — Real Image
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Example 5 — Depth Image
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Example 5 — Crack Detection
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Example 6 — Real Image
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Example 6 — Depth Image

36 | Pavement Distress Detection Using Advanced Machine Learning Methods with Intensity and Depth Data




Example 6 — Crack Detection
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Example 7 — Real Image
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Example 7 — Depth Image
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Example 7 — Crack Detection
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Example 8 — Real Image
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Example 8 — Depth Image
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Example 8 — Crack Detection
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Conclusion

Deep Learning - Well suited for pavement distress detection

WiseCrax with UNet — Very promising results
Precision = 90.9%
Recall = 99.9%

F1 Score = 94.8%
Continuing to learn rapidly

Large data sets improve results

Data Augmentation
Reduces burden of annotation
Increases speed of improvement
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