

### Identifying Deficient Pavement Sections using an Improved Acceleration-based Metric

Huanghui Zeng University of Virginia

## Agenda

- Introduction
- Data Collection
- Data Analysis Results
- I. Acceleration-based metric
- 2. Identification of deficient pavements
- Conclusions

## Introduction- Background

- Measuring pavement roughness is essential for pavement management
- Currently one of the most commonly used roughness measurements is the International Roughness Index (IRI)
- Collection of network level roughness data requires significant resources with accurate profiler

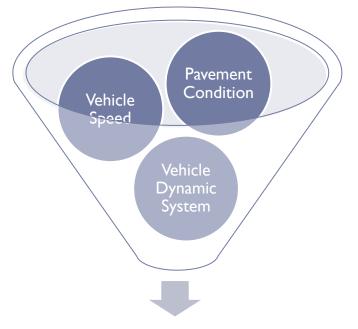


## **Connected Vehicle Environment**

- A connected, data-rich transportation system thanks to the development of sensor and wireless communication techniques
- Acceleration, GPS location, Vehicle Speed, etc...
- How can this new data be used to improve pavement assessment and management?





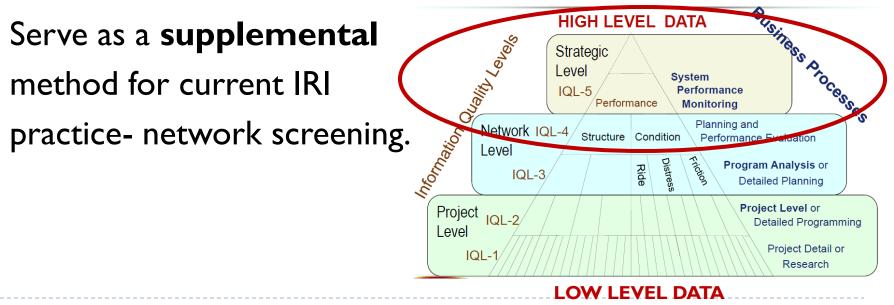

## Introduction- CVI-UTC Project

- "Pavement Assessment and Management Applications Enabled by the Connected Vehicles Environment- Proofof-Concept"
- To use data collected from "probe" vehicles to extract information that could be used to remotely and continuously monitor pavement health



## Introduction- Challenges

### Root Mean Squared Acceleration = IRI ?




#### **RMS** Acceleration

Acceleration-only metric may not be good enough

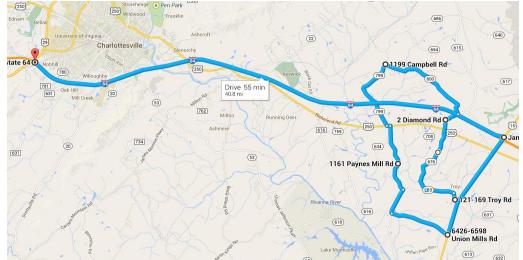
## Introduction-Objectives

- An acceleration-based metric by incorporating speeds
- Identify deficient pavement sections



## Data Collection System

- RoLine profiler
- Smartphone data (50 Hz)
  3-way accelerations
  GPS location, and speed
- IRI and RMS aggregated at 0.1-mile interval




|    | А     | В        | С         | D        | E        | F        | G        | Н        | 1        | J        |
|----|-------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|
| 1  | _id   | latitude | longitude | time     | speed    | accuracy | x        | У        | z        | stime    |
| 2  | 11820 | 37.62951 | -77.5643  | 1.36E+12 | 28.17035 | 4        | -0.07661 | 0.584185 | 10.26634 | 2.45E+13 |
| 3  | 11821 | 37.62951 | -77.5643  | 1.36E+12 | 28.17035 | 4        | -0.20111 | 0.6608   | 9.883265 | 2.45E+13 |
| 4  | 11822 | 37.62951 | -77.5643  | 1.36E+12 | 28.17035 | 4        | -0.43096 | 1.024718 | 10.69729 | 2.45E+13 |
| 5  | 11823 | 37.62951 | -77.5643  | 1.36E+12 | 28.17035 | 4        | -0.49799 | 0.919373 | 10.25676 | 2.45E+13 |
| 6  | 11824 | 37.62951 | -77.5643  | 1.36E+12 | 28.17035 | 4        | -0.29688 | 0.871489 | 10.30465 | 2.45E+13 |
| 7  | 11825 | 37.62951 | -77.5643  | 1.36E+12 | 28.17035 | 4        | -0.33519 | 0.517148 | 9.5385   | 2.45E+13 |
| 8  | 11826 | 37.62951 | -77.5643  | 1.36E+12 | 28.17035 | 4        | -0.56503 | 0.756568 | 10.18015 | 2.45E+13 |
| 9  | 11827 | 37.62951 | -77.5643  | 1.36E+12 | 28.17035 | 4        | -0.33519 | 1.024718 | 10.60153 | 2.45E+13 |
| 10 | 11828 | 37.62951 | -77.5643  | 1.36E+12 | 28.17035 | 4        | -0.45969 | 1.005565 | 10.51533 | 2.45E+13 |



## Data Collection Routes

- Three types of roadways
- 50-mile in total
- Speed limit range from 30 to 70 mph



| Route  | IRI Sum | nmary (in/r | nile) | Speed | (mph) |      | Number of | Sites    | Length |
|--------|---------|-------------|-------|-------|-------|------|-----------|----------|--------|
|        | Med.    | Min.        | Max.  | Med.  | Min.  | Max. | Deficient | Non-Def. | (mile) |
| IS-64E | 75.5    | 45.5        | 256.8 | 65.9  | 63.9  | 67.5 | 16        | 162      | 17.8   |
| IS-64W | 76.9    | 37.3        | 267.5 | 64.8  | 64.0  | 74.3 | 17        | 162      | 17.9   |
| US-15  | 82.6    | 63.4        | 125.5 | 52.4  | 50.2  | 54.1 | 0         | 35       | 3.5    |
| SR-616 | 124.7   | 86.1        | 172.0 | 45.4  | 41.2  | 47.8 | 6         | 15       | 2.1    |
| SR-600 | 121.2   | 85.7        | 219.3 | 40.8  | 34.0  | 50.4 | 9         | 25       | 3.4    |
| SR-799 | 87.4    | 123.9       | 228.5 | 39.3  | 32.0  | 49.3 | 8         | 20       | 2.8    |
| SR-676 | 189.9   | 151.8       | 248.2 | 40.5  | 33.5  | 45.8 | 25        | 0        | 2.5    |
| Total  | 85.0    | 37.3        | 267.5 | 64.8  | 32.0  | 67.5 | 81        | 419      | 50     |

## An Acceleration-based Metric

Finding from previous studies (Ahlin and Granlund, 2002)

$$\frac{vib}{IRI} = 0.16(v/80)^{(n-1)/2}$$

Recommended format: indicates the vibration level that a vehicle is expected to experience at 50 mph (80 km/h).

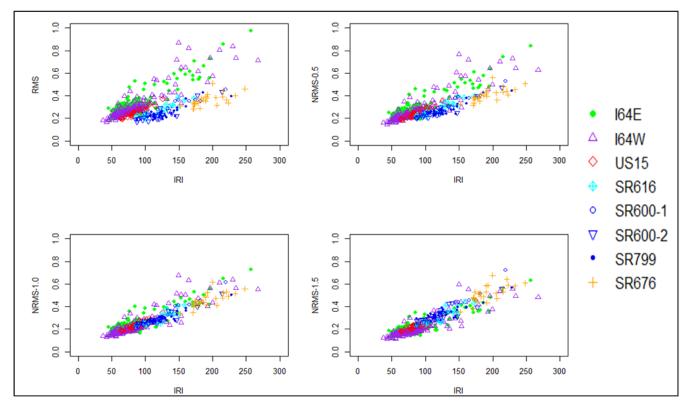
$$NRMS = (80/\nu)^w a_{z,RMS}$$

Where:

vib = vehicle vibration responses;

v = vehicle speed, km/h;

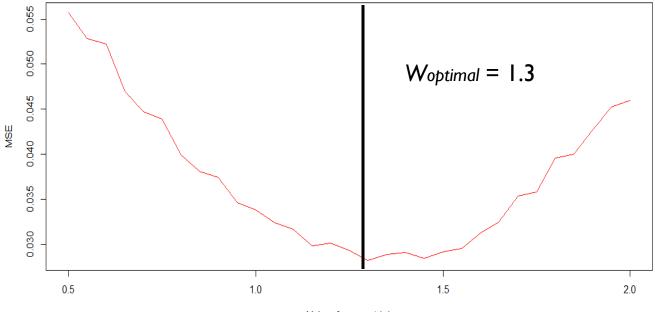
 $a_{z,RMS} = RMS$  vertical acceleration;


NRMS = normalied RMS acceleration; and

n, w = exponent values that are related to

pavement wavelength, and w = (n-1)/2.

## An Acceleration-based Metric


#### Scatter plots of IRIVs. RMS/NRMS (w = 0, 0.5, 1, 1.5)



For network screening, what's the optimal value of w?

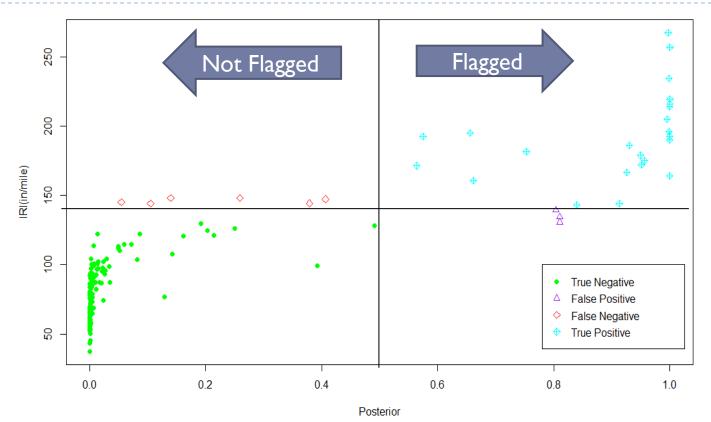
## An Acceleration-based Metric

#### Classification error curve



Value of exponent (w)

 $NRMS = (80/\nu)^{1.3} a_{z,RMS}$ 


## Identification of Deficient Pavements

•  $Y_i = \begin{cases} 1 & \text{If the pavement is deficient } (IRI_i \ge 140 \text{ in/mile}) \\ 0 & \text{If the pavement is not deficient } (IRI_i < 140 \text{ in/mile}) \end{cases}$ •  $\log(Odd) = \alpha + \beta NRMS_i$ 

| Model            | Variable          | Coefficient     | S.E.         | Significant    | Odds<br>Ratio <sup>1</sup> | Nagelkerke<br>R Square <sup>2</sup> | AIC   | NRMS <sub>0</sub> |
|------------------|-------------------|-----------------|--------------|----------------|----------------------------|-------------------------------------|-------|-------------------|
| Default<br>Model | Intercept<br>NRMS | -14.20<br>39.04 | 2.16<br>6.16 | 0.000<br>0.000 | 1.48                       | 0.84                                | 69.46 | 0.36              |

A pavement section will be flagged as deficient if its NRMS  $\geq 0.36$  m/sec<sup>2</sup>.

## Identification of Deficient Pavements



Identify correctly 80% (24/30) of deficient pavements

The IRIs of those mis-identified sections are close to 140 in/mile

## Conclusion and Future Research

- This study developed a normalized acceleration-based metric (NRMS) that can generalize to different functional classes of highway by incorporating vehicle speed.
- Feasibility of using NRMS for the purpose of network screening
- Future Research:
- I. Identify IRI > 220 inch/mile situation
- 2. Vehicle dynamic system impacts
- 3. Filters to remove invalid data
- 4. Prototype system using state-own vehicles

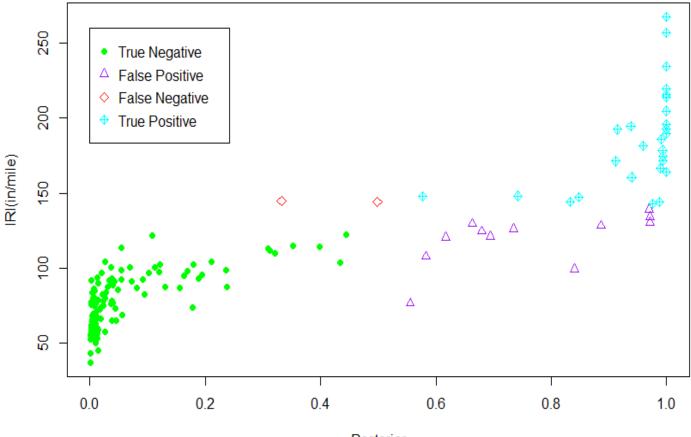
## Questions?

# Thank You!

Contact Information: Brian Smith Professor Center for Transportation Studies University of Virginia. Charlottesville,VA briansmith@virginia.edu Huanghui Zeng PhD Candidate Graduate Research Assistant Center for Transportation Studies University of Virginia, Charlottesville,VA hz3xm@virginia.edu



16


## **Classification Results Summary**

**TABLE 3** Classification Results Summary

|         |           | Testing Data Predicted |           |                    |  |  |  |  |
|---------|-----------|------------------------|-----------|--------------------|--|--|--|--|
| Model   | Observed  | Non-Def.               | Deficient | Correct Percentage |  |  |  |  |
|         | Non Dof   | 132                    | 3         | 97.78              |  |  |  |  |
| Default | Non-Def.  | $(99, 33)^1$           | (0, 3)    | (100.00, 91.67)    |  |  |  |  |
| Model   | Deficient | 6                      | 24        | 80.00              |  |  |  |  |
|         | Deficient | (3, 3)                 | (13, 11)  | (81.25, 78.57)     |  |  |  |  |
|         | Non-Def.  | 123                    | 12        | 91.11              |  |  |  |  |
| Shifted | Noll-Del. | (96, 27)               | (3, 9)    | (96.97, 75.00)     |  |  |  |  |
| Model   | Deficient | 2                      | 28        | 93.33              |  |  |  |  |
|         | Deficient | (1, 1)                 | (15, 13)  | (93.75, 92.86)     |  |  |  |  |
|         | Non-Def.  | 133                    | 2         | 98.51              |  |  |  |  |
| No      | Non-Dei.  | (98, 34)               | (1, 1)    | (98.99, 97.14)     |  |  |  |  |
| Speed   | Deficiert | 13                     | 17        | 56.66              |  |  |  |  |
|         | Deficient | (7, 6)                 | (9, 8)    | (56.25, 57.14)     |  |  |  |  |

Note: 1. The first value in the parenthesis indicates the number of interstate sections and the latter the number of non-interstate sections.

## Classification Results- Shifted Model



Posterior

D

## Training and Testing Dataset

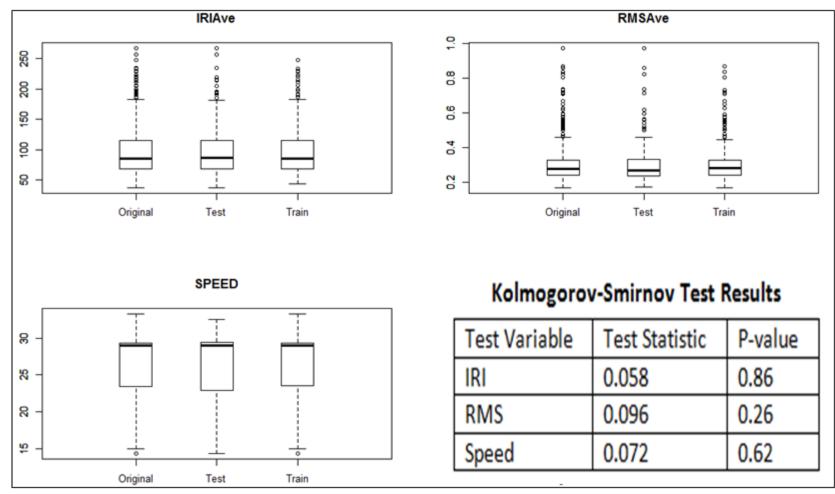
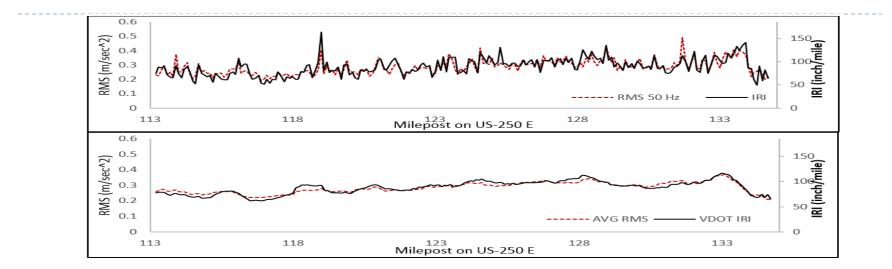
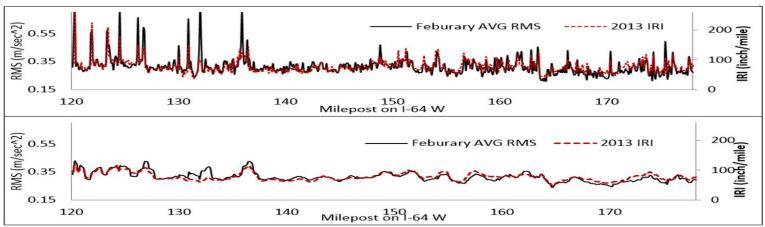





FIGURE 1 Comparison of IRI, RMS and Speed Data in the Testing and Training Datasets







Moving average using a 1-mile window.

Fig. 3 IRI compared to RMS acceleration on I-64 W; Top: Original 0.1-mile data; Bottom:

#### Moving average using a 1-mile window.