Pavement evaluation – an international perspective: Fit for purpose? Richard Wix, ARRB Group

Roads – the arteries of a nation

GRO

'All roads lead to Rome'

- Roads have always been important
- Romans built roads that lasted

http://www.crystalinks.com/romeroads.html

Appian Way today

Early pavement evaluation

ROAD INDICATOR,

INSTRUMENT FOR ASCERTAINING

12 1 1

02

THE

COMPARATIVE MERIT OF ROADS,

4352

THE STATE OF REPAIR IN WHICH THEY ARE KEPT.

INTERSED BY

JOHN MACNEILL,

MEMORE OF THE DOUTTETING OF STUDIES, DOUTON ; AND DOUTDENT TO THE PARTAMENTARY COMMERCING OF THE ROLTHRED AND ATTENDED TO DO.

> LONDON: ROAKE AND VARTY, S1, STRAND.

> > 1835.

Road indicator (1833)

This Instrument is capable of being applied to several very important purposes in road engineering, amongst which are the following,

First, It affords the means of ascertaining the exact power required to draw a carriage over any line of road.

Secondly, It can be applied to compare one line of road with another, so as to determine which of them is the best, and, the exact amount of the difference, as regards horse power, both for slow and fast coaches.

Thirdly, The comparative value of different road surfaces may be determined with great exactness.

Fourthly, It affords the means of keeping a registry, in a most accurate manner, from year to year, of the state of a road, showing its improvement or deterioration, and the exact parts in which such improvement or deterioration have taken place.

Pavement evaluation 2014

Theme:

- Right measures?
- Right quality?
- Right analysis?
- Right quantity?
- What is the benefit?

What's going on in.....

Kwazulu-Natal province

	Functional Class	Length (km)
Paved	Main Roads	7 090
	District Roads	598
	Local Roads	61
	Total Paved	7 749
npaved	Main Roads	6 075
	District Roads	11 065
	Local Roads	6 278
Ο	Total Unpaved	23 418
Tota	KZN Provincial Network	31 167

Estimation of ride quality

Rating	Descript or	Comfo Safe S	ortable, Speed		VISUAL ASSES	SSMENT : UNPAV	YED ROADS ROUTE CLASS: 1 TRAFFIC : VL GRADIENT: Fix TERRAIN: Fix	2 3 4 5 L M H VH Med Steep Polling Mount
1	Very Good	> 100)km/h		SEGMENT (TO) : SEGMENT DIMENSIONS : MATERIAL QUALITY	LENGTH IAL INFORMATION / GR Very Good Good Problem	ROAD TYPE Gravel MOIST Wet m WIDTH AVEL PROPERTIES Moderate Poo oversize clav/sit	Earth Track Moist Dry m Very Poor bose gravel losse sand
2	Good	80 - 10	00km/h		MAXIMUM SIZE GRADING ESTIMATED 'PI' LAYER THICKNESS EXPOSURED SUBGRADE	<13 mm Coarse Low > 125mm 100 - 125mm none	13 - 25 mm 25 - 50 Medium Fine Medium Higl 50 - 100 mm 25 - 50 isolated freque	mm > 50 mm 3 n mm < 25mm ent continious
3	Average	60 - 8	0km/h		SUBGRADE QUALITY	Problem E DISTRESS / ENGINEE	Good Moder wet RING ASSESSMENT DEGREE R VARNING SEVERE ISOL	ate Poor clay/mud sand EXTENT ATED EXTENSIVE
4	Poor	40 - 6	0km/h		POTHOLES CORRUGATIONS RUTTING LOOSE MATERIAL			
5	Very Poor	< 40	km/h		STONINESS : FIXED : LOOSE EROSION : TRANSVER : LONGITUDI : LONGITUDI ROUGHNESS Pro	SE NAL FUNCTIONAL ASSE Very blem leformation potholes stori	SSMENT	Poor Very Poor s rutting rut/erosion
		FUNCT	IONAL A	SSESS	TRAFFICIBILITY SAFETY DRAINAGE ON TH	Problem loose mat cd Very Problem Very Problem Very Problem Very	Good Good Moderate ay rocky vegetation Good Good Moderate Dust skidressis Good Good Moderate	Poor Very Poor steep drainage Poor Very Poor slipperiness drainage Poor Very Poor
RUUGHNEOO		Problem Seformatio	potholes	stonines	s rock outcrop	corrugations	rutting	rut/erosion

Roughness

"The deviation of a surface from a true planar surface with characteristic dimensions that affect vehicle dynamics and ride quality" (ASTM E867)

Comparison – IRI versus visual

Nigeria

Use of satellite images for pavement evaluation

Transport Infrastructure Monitoring Project Phase II:

Funded by: Catapult Satellite Applications CATAP

Consultants:

• TRL Ltd 🥻

• Airbus Defence and Space

CAIRBUS DEFENCE & SPACE

Cooperation with the Nigeria Infrastructure Advisory Facility – funded by DFID/UK

Pilot area – Kano State

Data actually used in project

SPOT6 satellite image 1.5m resolution for road mapping

Pleiades satellite image 0.5m resolution for road condition

Condition assessment system

- OP Paved, good to fair condition
- OE Earth, good to fair condition
- 1E Earth, fair condition
- 2E Earth, fair to poor condition
- 3E Earth, poor condition
- 4E Earth, very poor condition

Ground truthing using image collector

Forward facing images

Condition assessment rules

Results of assessment

- Road condition assessment based on rules
- 50cm resolution
 Pleiades satellite
 imagery

Change of condition

Bridge identification

Culvert identification

Condition assessment accuracy

Correlation with Correlation with % Correlation

Image Collector Image Collector

Comments

OP	1.9	1.9	0	100	Excellent correlation
0E	1.7	0.2	1.5	12	Condition for only one road - 0E looks like 0P on imagery
1E	8.5	6.7	1.8	79	Very good correlation
2E	19.4	11.5	7.9	59	Good correlation - tendency to condition as 3E
All	31.5	20.3	11.2	64	Good correlation for all scenarios

Condition Length (km)

Egypt – road safety

🔯 Route 35 F 01 - Hawkeye Processing Toolkit - Version 4.13.2 (Build: 414)

arob hawkeye:LT2022\HAWKEYE:HAWKEYELCMS:304951719078:19.0: File View Tools Window Help 0 Toolkit Modules | |> Survey Position **CENTRE** RIGHT **V**LEFT -12.5r 5п Or 10m 4.189 m 4m 9п 8r /ðm Zπ -6m 6m -5m 5m -1m 0m 1m 2m 211 1984/13694 4m 1984/13692 4 1984/13694

 Server: (local)\HAWKEYE
 Database: HAWKEYELCMS
 Survey ID: 304951719078
 Date and Time: 16/02/2014 8:47:20 PM
 Version 4.13.2 (Build: 414)

Horizontal curvature

Star Maps (preliminary results)

0 U

Р

G R

Caught on film

Caught on film

Drive by shopping

Road assessment programs

2

www.decadeofaction.org

A small island nation

Kiribati

- Remote Pacific Island nation
- Low population
- Small road network

EVALUATION OF A SMARTPHONE ROUGHNESS METER M R SCHLOTJES, A VISSER, and C BENNETT

Europe

- TRIMM (Tomorrow's Road Infrastructure Monitoring & Management) advanced & specialised monitoring techniques, structural and surface condition
- ROSANNE main objective is the harmonisation and standardisation of the measurement of skid resistance, noise emission and rolling resistance of road pavements (predecessors were TYROSAFE, HERMES, SILVIA and MIRIAM)

Roughness statistics

• IRI

 WLP (weighted longitudinal profile)

 σ for irregularities

• Δ for "local" features

Traffic speed condition surveys (TRACS)

- These largely cover the condition of the pavement surface
- TRACS surveys have been carried out on the English Strategic Road Network since 2000 (around 15,000km of main line lanes)
- The surveys are carried out by an independent contractor using a survey vehicle specifically constructed for the purpose
- TRACS surveys are subject to a detailed quality assurance regime, currently carried out by TRL Ltd

Traffic speed condition surveys

- Detailed "end result" specification was issued in 1999 for the measurement of:
 - location
 - surface condition
 including surface
 cracking and rutting
 - road geometry

TRACS 1&2

TRACS 3 from 2012 to present

The TRACS survey provides the following measures of the condition of the pavement surface over the main line of the HA's strategic road network:

- Rut depth
- Ride quality
- Texture depth
- Cracking
- Surface Deterioration
- Fretting
- Lane fretting

- Surface type
- Noise
- Geometry
- Downward facing images
- Forward facing images
- Retro-reflectivity

Traffic speed structural surveys

TRASS1

- Network surveys using TSD already undertaken in TRASS1
- Two survey contracts let for a Winter survey and a Summer survey
 - Yotta (winter)
 - WDM (summer)
- Reports are available

Survey period	Total surveyed [km]	Total valid [km]	% valid	1	V	
Summer (WDM)	7057	6211	87.6%	100	A	
Winter (Yotta)	7838	5775	73.7%	W	S	
TOTAL	14895	11986	80.5%		Summe	
					coverad	

TRASS Water Survey Report

121

Traffic Speed Structural Survey (TRASS)

Winter

coverage

Traffic speed structural surveys

TRASS2

- Network surveys with TSD undertaken by Fugro
- Survey Jan 2012 to End Mar 2012
- Data validity
 - Feb surveys: 67%
 - March surveys: 78%
 - Average: 75%
- Report is available

Fagro Aperio

TRAFFIC SPEED

Traffic speed structural surveys (TRASS3)

- 3 year + 1 +
 1 contract
- Started
 September
 2014

TRASS3 Objectives

- Operate and Support the TSD to Collect
 - TRASS Raw Condition Data (RCD)
 - Base Condition Data (BCD)
 - Ground Penetrating Radar (GPR) data
- Deliverables:
 - The Surveys
 - Survey Data
 - Quality Assurance records and data
 - Progress reports
- Roles:
 - Highways Agency
 - Auditor TRL
 - Technical Advisor TRL
 - Survey Consultant

Australia

Common automated pavement condition parameters (meat & 3 veg)

- roughness
- rutting
- texture
- skid resistance
- strength

Moving to more sophisticated measures

Pavement strength testing

- Traditional methods such as FWD still in wide use
- Relatively slow technology
- Not safe for network testing; requires significant traffic control

2010 TSD trial

18,000 km in two states

AP-R395-12

AUSTROADS RESEARCH REPORT

Purchased a TSD

Benchmarking

Source: Google Earth, "map title, scale" map data: CNES/Astrium, Sinclair Knight Merz & Fugro, Google, USA.

Even made the news.....

https://au.prime7.yahoo.com/a1/news/a/-/national/24755669/what-lies-beneath-video/ arrb.com.au

Not the only one

TSD #	Country	Year	Organisation
1	Denmark	2004	The Danish Road Directorate
2	United Kingdom	2005	Highways Agency (TRL)
3	Italy	2010	ANAS S.p.A.
4	Poland	2011	IBDiM
5	South Africa	2012	SANRAL
6	China	2013	RIOH
7	USA	2013	Greenwood
8	Australia	2014	ARRB

Comparative measures

Illawarra 2 - Maximum deflection - DFG vs FWD vs TSD

More than just deflection

- Roughness
- Rutting
- Texture
- Cracking
- Imaging

Big burger approach

- Cost benefits to road agencies
- Reduction in number of surveys
- Safer data collection methods
- More data

New technologies

- Original test methods developed in 2003
- 'Since then, new road condition monitoring technologies..... have been developed'
- 'The existing suite of Austroads documents do not provide specifications or test methods for these new technologies'

New Zealand (Aotearoa)

- Friction testing of entire road network
- 'it is recommended that authorities in New Zealand should give strong consideration of using the automated crack detection'
- 'the reality is that in the new performance based world of today, the repeatability and robustness of visual surveys are simply not good enough'

A pyramid

Bennett & Paterson

Another pyramid

Pavements – a valuable asset

Are we getting it right?

Right measures? Right quality? Right analysis? Right quantity? What is the benefit?

Kitami City, Japan (fit for purpose)

Passenger/Commercial Vehicle (Road Patrol Car)

Thank you

Acknowledgements:

- Brian Ferne
- Hans Jones
- Lars Forslöf
- Leif Sjögren
- Michael Moffatt
- Robin Workman
- Søren Rasmussen
- Yeshveer Balaram

Pavement Evaluation 2014 September 15-18, 2014 V Blacksburg, Virginia

