Friction Studies-From Passive to Intelligent Tires

Saied Taheri, PhD Associate Professor and Director Center for Tire Research (CenTiRe) Mechanical Engineering Department Virginia Tech Blacksburg, VA 24060

Invent the Future

CenTiRe Vision

 The Center for Tire Research will provide the forum for industry/university cooperative research for the further development, validation, and industrial implementation of the emerging technologies of tire materials, manufacturing, modeling, and testing.

Relevant Projects

- Multi-Scale Modeling of Tire-Road Contact and Adhesion
- Tire-Soil Interaction Model
- Pneumatic Tire Performance on Ice
- Macro Road Surface Profiling
- A Portable Low-Cost System for High-Speed
 High-Precision Surface Profiling
- High-Precision Tire Modeling and Analysis for Tire-Road Noise Prediction
- Estimating Tire-Road Friction from Probe

Vehicles

Invent the Future

Multiscale Modeling

- To better understand tire and vehicle performance, a better understanding of tire-road contact mechanics is needed
- Accurate road profiles -> extract characteristic properties (e.g., friction, roughness)
- Build a comprehensive, multi-scale database of Pavement Surface Characteristics and friction
- Tire-road contact modeling using Wavelet and Fractal based approach

Invent the Future

Background/Introduction

• A major problem in highway safety and traffic engineering is to understand the mechanisms of friction between the tire and the road.

- Pavement surface texture significantly contributes to tirepavement friction.
- Several researchers have claimed that road profiles are fractal, and that this fractality is related to the friction properties of the road.
- The objective here is to present texture properties and

contact mechanics that can predict tire-pavement friction.

Rubber Road Contact

In order to be able to estimate friction between rubber and a rough surface, we need to:

- Measure the surface profile (possible through using the Nanovea optical profilometer)
- Characterize the surface
- Characterize the tread compound
- Calculate the real area of contact
- Estimate cold friction
- Include the effect of flash temperature

Estimated Friction

Nanovea JR25

- Designed with leading edge optical pens using superior white light axial chromatism.
- Excellent vertical and spatial resolution.
- Add-on features:
 - Contour measurement
 - Fracture surface measurements
 - Surface wear subtraction
 - Adhesion surface topography

Friction Tester

• Outdoor testing:

- > Weather conditions.
- Time -- Money -- Human resources

• Indoor Testing:

irgi

Invent the Future

- Reduced cost
- Controlled laboratory environment
- Improved data accuracy and reproducibility
- Ease of data accessability and processing

Road Profile Characterization

Profile		Mean Square Roughness	Power Spectral Density
BO	0.48	0.0511	0.0502
B90	0.39	0.0405	0.0398
C180	0.35	0.0374	0.0366

μ-Slip Curve for Tires

Invent the Future

Tire-Soil MBD Model

Side wall diagram

ech / University

Virginia

Invent the Future

Tread and belt diagram

Terramechanics Rig

Test Tire: Michelin LTX A/T2 235/85/R16

DOE – Individual Parameter Change

9/24/2014

Ice Project

- 2 inches thickness of ice
- Ambient Temperature= 15-17^oC

Results

9/24/2014

Macro Road Profilometer Prototype System

Experimental Setup

- Identify scan matching algorithm's ability to assemble road profiles
 - Image features are trackable

Invent the Future

Depth measurements are preserved

Road Profiling Results

Endpoints

Invent the Future

Micro Road Profiling System

Core procedures:

- Images taken with single LED on each time
- 3D surface reconstruction from images via Shape from Shading (SfS)
- Scan matching for large area measurements

Special features:

- Fast data acquisition due to area scan
- Compact and mobile

Proposed conceptual system [1]

Scan matching

Results

Tech |

9/24/2014

Noise Modeling

/irginia'

Invent the Future

Tire State Measurement System-TSMS

Tire State Measurement System

Invent the Future

September 15-18 Blacksburg, VA

The Tire of The Future

"Tire- In -The Loop (TIL) System"

Single-point Sensing System – "Useful" Data Available Once Every Tire Revolution

9/24/2014

Tire Instrumentation and Testing

Algorithm Development Process

Signal Processing and Feature Extraction

System Performance

0.4

0.3

0.2∟ 0

Invent the Future

Dry Asphalt

10

5

20

Sample Number

15

25

30

.en

Tech | University

method tire travels at constant speed without braking, accelerating or cornering

September 15-18 Blacksburg, VA

40

45

35

Classifier performance was unsatisfactory

the different road surface conditions

 ✓ Friction condition can be estimated when vehicle is not necessarily performing any dynamic or handling maneuver.

Higher misclassification rates under high slip conditions were attributed the to increased vibration levels the in circumferential acceleration signal due to the stick/slip phenomenon linked to the tread block vibration modes.

September 15-18 Blacksburg, VA

Features: Footprint length Radial Deformation

Load Estimate

Artificial Neural Network (ANN) Based Parameter Estimation Algorithm

9/24/2014

Closing Remarks

- A good example of closing the gap between pavement characteristics and tire-vehicle system, is IRI
- Up to this point, a single entity that could close the gap in all aspects of pavement characteristics and tire and vehicle dynamics did not exist
- Center for Tire Research (CenTiRe), with the major OEMs and tire companies as members, can become the research partner with DOTs/FHWA/RPUG to further evaluate the existing pavement characterization methodologies and add new ones to close the gap mentioned above
- Also, partnership with private companies can help with the development and commercialization of the technologies being developed

Thank You! Questions?

Jirgir

Invent the Future

Pavement Evaluation September 15-18 Blacksburg, VA

9/24/2014