Virginia Polytechnic Institute and State University Charles E. Via Jr. Department of Civil Engineering

Road Network Pavement Management Program

Ross McCarthy, Edgar de León Izeppi & Gerardo W. Flintsch, Center for Sustainable Transportation Infrastructure

Kevin McGhee, Virginia Center for Transportation Innovation and Research

Outline

1. Background

2. Virginia Pilot Project

3. National Effort for FHWA

4. Final Remarks

Center for Sustainable Transportation Infrastructure

1. Background

Why do we care?

Tire-pavement Friction is one of the Factors Contributing to Crashes & Fatalities

Urban Principal Arterial - Wet

Tire-Pavement Friction Testing

....Now

Evolution of the Tow Vehicles

Then....

....Now: power steering, anti-lock braking, electronic stability control, etc.

Continuous Friction Measurement Equipment (CFME)

Friction Intervention Levels (VA)

Historical basis:

- Maximum stopping distance of 133 feet from travel speed of 40 mph
- Investigate:
 - ▷ SN40S < 25</p>
- Intervene:
 SN40S < 20

Investigatory Levels (UK)

Road classification definitions		Investigatory level (31 or 50 mph)							
		0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65
А	Interstate highways								
В	Divided highways w/o intersections, grade, etc.								
С	Two lane road w/o intersections, grade, etc.								
Q	Intersection (& roundabouts)								
K	Pedestrian crossings and other high risk areas								
R	Roundabout								
G1	Slope 5-10%, longer than 160 feet								
G2	Slope >10% longer than 160 feet								
S1	Curve radius < 1600 feet - divided roads								
S2	Curve radius < 1600 feet - two lane roads								

2. VDOT Pavement Friction Management Program Pilot Demonstration

Preliminary Results

VDOT Pilot Project Objectives

- Introduce modern CFME for network friction data collection in VA
- Establish investigatory (desirable) and/or intervention (minimum) levels of friction based on analysis of crash data in one district in Virginia (Salem)
- Compare CFME with traditional locked-wheel skid tester used in VA

Preliminary Data: Wet Accidents (IS)

Preliminary Data: Dry Accidents (IS)

Network Friction Distribution

Status of Research

- Compiling data
 - > Tire-pavement friction
 - District crash records
 - Geometrics & facility operating characteristics
- Developing intervention levels
 - Match demand with supply
- Propose proactive statewide program
 - "Unify" Materials, Maintenance, and Safety

2. National FHWA-Sponsored Effort

WirginiaTech

Development and Demonstration of Pavement Friction Management Programs - Second Phase Update

Development and Demonstration of Pavement Friction Management Programs

Objective:

- Determine criteria and develop methods, for establishing investigatory (desirable) level and intervention (minimum) levels for friction and macro-texture for different friction demand categories or classes of highway facilities for at least four states
- Assist at least four states in developing PFM Programs
- Demonstrate state-of-the-art friction (and macrotexture) measurement equipment

Including geometrics

Phase I Completed in 2011

DTFH61-09-R-00035

Evaluate Different Approaches for setting investigatory (desirable) level and intervention (minimum) levels for friction and macro-texture

Other appr., e.g., Modeling the probability of wet (or wet/dry) crashes (risk) as a function of friction number using other models used for safety analysis

Center for Sustainable Transportation Infrastructure

Demonstrate state-of-the-art friction (and macro-texture) measurement equipment

Phase II - The Acceptance Testing and Demonstration of the Continuous Friction Measurement Equipment

- Task 1. Receive Equipment, Training & Acceptance
- Task 2. Establish State Highway AgencyParticipation in the Development andDemonstration of Pavement FrictionManagement Programs
- Task 3. Preliminary Data Analysis
- Task 4. Data Analysis of Friction Thresholds

Phase II - The Acceptance Testing and Demonstration of the Continuous Friction Measurement Equipment (cont.)

- Task 5. Develop Suggested Pavement Friction Management Programs for Participating SHAs
- Task 6. Prepare Final Report and Supplement to AASHTO Guide for Pavement Friction
- Task 7. Develop Promotional andImplementation Products

Center for Sustainable Transportation Infrastructure

CDRM

4. Final Remarks

Final Remarks

- There is a weak but statistically significant relationship between friction level and accident rate/risk
- VA pilot study suggests that the establishment of investigatory levels is feasible (at least for interstate roads) and that CFME has advantages over current practice
- National study to support the establishment of pavement friction management programs is seeking state participation

flintsch@vt.edu

& RESEARCH

