

Adaptive Spike Removal Method for High Speed Pavement Macrotexture Measurements by Controlling the False Discovery Rate

Samer Katicha

Pavement Evaluation September 17th 2014

8/11/2014

Outline

- Background
- Problem statement
- Objectives
- Research approach
- Results
- Conclusions

 Today's technology allows <u>collection</u> <u>and analysis of pavement</u> <u>macrotexture</u>, not only with <u>static</u>, but also with <u>dynamic methods</u>, that can collect the pavement profile with <u>significant precision</u> even at traffic speed.

- A standardized procedure for texture measurements at network level is not yet available
- Studies show that besides the traditional low-pass filtering, slope suppression, and drop out correction; the calculus of MPD values must be free of spikes.

Problem Statement

- High-speed laser data are subjected to a variety of potential problems:
 - Shiny mirror-like surfaces
 - Black and/or shiny materials
 - Transparent materials
 - Others:
 - Temperature
 - Geometry

Bandwidth
 Sample rate

Change the amount — and direction of incident light reflected to the receiving lens

Transportation Institute

Illustrations from LMI Selcom User's manual

Problem Statement

- All laser measurements have spikes
- They create biases on the texture measurements.
- →Need to remove those spikes in order to get good values for texture

Objective

 Develop a method that can objectively identify and remove spikes.

Methodology

- (a) Develop an innovative methodology that can objectively identify and remove the spikes.
- (b) Test this methodology with real data collected over different pavement surfaces
- (c) Calculate the MPD values and their associated statistical parameters, and
- (d) Validate the method by comparing the results with the ones obtained by the CTMeter(s), chosen as the standardized control method.

Sites: 14 sections on Smart road.

Section	Mix	Binder
Α	SM-12.5D	PG 70-22
В	SM-9.5D	PG 70-22
С	SM-9.5E	PG 76-22
D	SM-9.5A	PG 64-22
Е	SM-9.5D	PG 70-22
F	SM-9.5D	PG 70-22
G	SM-9.5D	PG 70-22
Н	SM-9.5D	PG 70-22
Ι	SM-9.5A	PG 64-22
J	SM-9.5D	PG 70-22
K	OGFC	PG 76-22
L	SMA-12.5D	PG 70-22
VDOT Modified EP-5 *	Epoxi-(Silica, Basalt) concrete overlay	epoxy
SafeLane TM *	3/8-in-think polymer-Limestone concrete overlay	epoxy

Equipment: 2 CTMeters, 1 HSLD

Successfully pre-calibrated

The HSLD has a laser spot with diameter of 0.2 mm and a sampling frequency of 64 kHz

- Methodology:
 - First, determines the <u>distribution</u> of texture measurements, and
 - Second, determines which measurements are outliers and therefore spikes (determine a <u>threshold</u>)

Methodology (distribution):

- Normal distribution with a fixed 3 sigma threshold to define outliers?
 - **Real texture data do not follow a normal distribution**
- ✓ Proposed approach → Generalized Gaussian Distributions (GGD)
- Data adaptive threshold based on FDR (False Discovery Rate)

Methodology (threshold):

 Normal distribution with a fixed 2 or 3 sigma threshold to define outliers?

- 2 sigma (which approximately covers 95 % of the distribution) or 3 sigma (about 99 %).
- □ For example, 20 m pavement section, data every 0.5 mm → 40,000 measurements. <u>2 sigma</u> <u>threshold</u> → on average, <u>2,000</u> of the collected measurements will be identified as spikes. Even with using <u>3 sigma</u> as a threshold, <u>400</u> measurements will be identified.
- They fail to address one crucial aspect of high speed texture measurement – <u>the large amount of</u> <u>data collected</u>.

Methodology (threshold):

- Proposed approach: adjustment to the threshold.
- A possible approach: The Bonferroni correction:
 - divide the p-value of the significance test by the number of observations.
 - i.e. for the 95% interval, the p-value is 0.05; with 40,000 measurements:
 - Bonferroni correction adjusts the p-value of 0.05 to 0.00000125 (=0.05/40,000).
 - While this will solve the problem of <u>wrongly identifying</u> <u>outliers</u>, it will miss detecting outliers that are just under the Bonferroni threshold.

To address this shortcomings: FDR approach which adapts to the data

Center for Sustainable Transportation Infrastructure

Methodology (threshold):

FDR: Controls <u>the proportion</u> of wrongly identified spikes among all identified spikes

- □ *n* measurements of which n_0 are not spikes and $1-n_0$ are spikes, calculate the p-values of all *n* measurements
- □ Reorder the p-values in increasing order $p_1 \le ... \le p_i \le ... \le p_n$
- Select a q value at which to control the FDR (e.g. 0.01, 0.05, or 0.1). (q is the prop. of false spikes among all spikes)

• Let k be the maximum i such that: $p_i \leq \frac{l}{n}q$

Spikes are identified as all measurements whose p-value is $\leq p_k$

$$FDR \le \frac{n_0}{n} q \le q$$

Threshold selection. The 2 sigma and Bonferroni thresholds are constant while the FDR threshold adapts to the measurements

To obtain the parameter β , the distribution is fitted (i.e.) to the 90th to 97th percentiles of the data.

Transportation Institute

- Ten <u>randomly</u> taken measurements with each CTMeter were made for every section along the left wheel path.
- Ten Runs along the same wheel path were made with the HSLD.
 - The dynamic measurements were processed using the proposed denoising methodology, with a chosen False Discovery Rate of 0.1, and a range of 0.9 to 0.95

- Found 6,034 spikes , over 4,517,952 measurements, \rightarrow 0.13%
- Similar percentages were found for the other runs.

Transportation Institute

- → The denoising method <u>found on average one significant</u> <u>spike for approximately every 750 data points (300 to 400 mm).</u>
- In other words the method <u>successfully removes spikes</u> that otherwise <u>would affect</u>, on average, <u>one third</u> of the calculated continuous MPD results.

- The MPD calculations using the ASTM E1845-09
- MPD measurements (one value every 100 mm)

- The MPD calculations using the ASTM E1845-09
- MPD measurements (one value every 100 mm)

'irginia'

Transportation Institute

lèch

UrginiaTech

Validation

Transportation Institute

Conclusions

- An <u>innovative</u> and <u>robust methodology for removing</u> <u>spikes</u> from texture measurements gathered with an HSLD <u>is proposed</u>
 - ✓ → This is a significant step towards the development of standardized procedures that allow the use of these devices for texture investigation at network level.
- <u>The test of the proposed methodology using a substantial amount of data collected over several and different pavement surfaces confirmed the reliability of the method on surfaces with different texture distributions, macrotexture depth, connectedness, porosity, etc.
 </u>

Conclusions

- For all HSLD measurements, the proposed methodology was able to <u>effectively remove</u> (at least most of) the spikes from the texture profile on all the surfaces investigated.
- The <u>validation</u> of the method showed that the MPD results obtained with denoised dynamic measurements are <u>comparable</u> to MPD results from the control devices on all the pavement sections investigated.

Thank you

