Distress Image Library for Precision and Bias of Fully Automated Pavement Cracking Survey

> Kelvin C.P. Wang, Ran Ji, and Cheng Chen kelvin.wang@okstate.edu

Oklahoma State University/WayLink School of Civil and Environmental Engineering

> Pavement Evaluation 2014 Blacksburg, VA

Challenges of Distress Detection

- Benchmark Database and Evaluation Methods
- Case Studies of Algorithm Comparison

Manual Distress Survey

- Tedious manual measurement and rating processes
- Substantial manpower
- Access to pavement
- Traffic control
- Difficult or inconvenient in archiving and retrieving detailed quantitative information

Photo from: <u>https://www.nevadadot.com/About_NDOT/NDOT_Divisions/Planning/Aviation/Pavement_Condition_Index.aspx</u>

Challenges of Cracking Survey

Analysis and Processing
 Detection/Identification
 Classification
 Precision and Bias
 Reference???

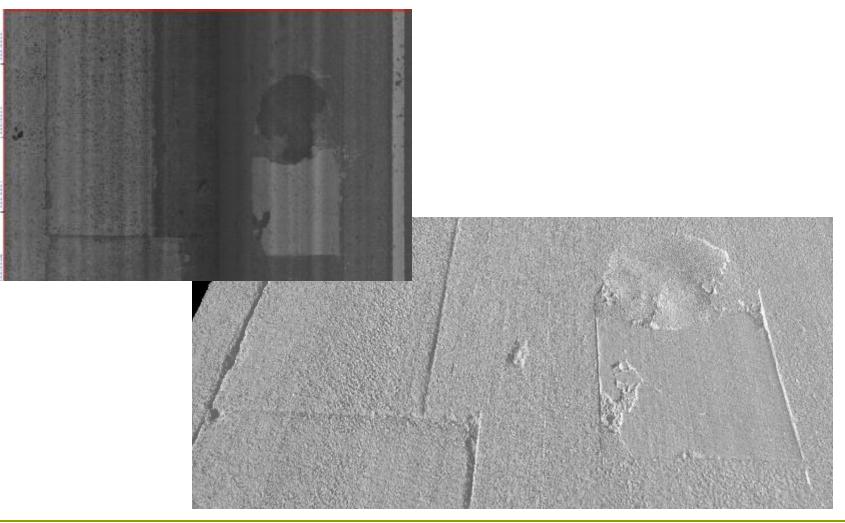
PaveVision3D Ultra Systems

PaveVision3D Ultra - New

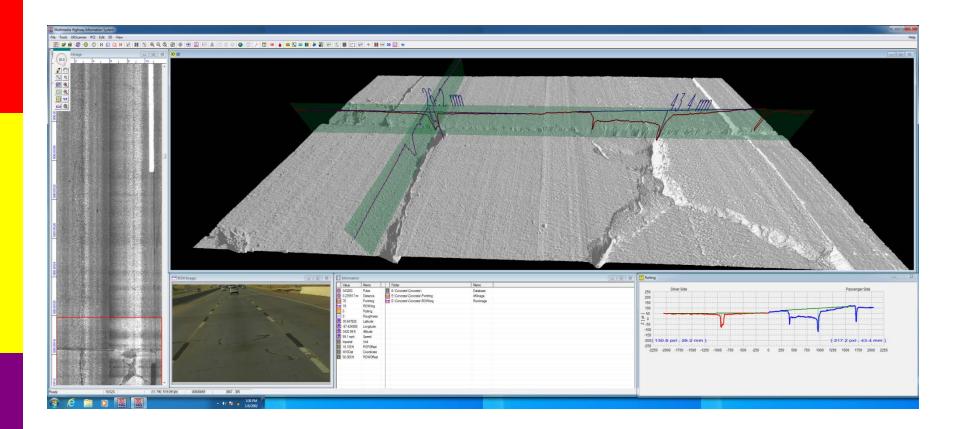
Green Lasers for 3D Ultra

7

3D Ultra Data at 60MPH (100KM/h)

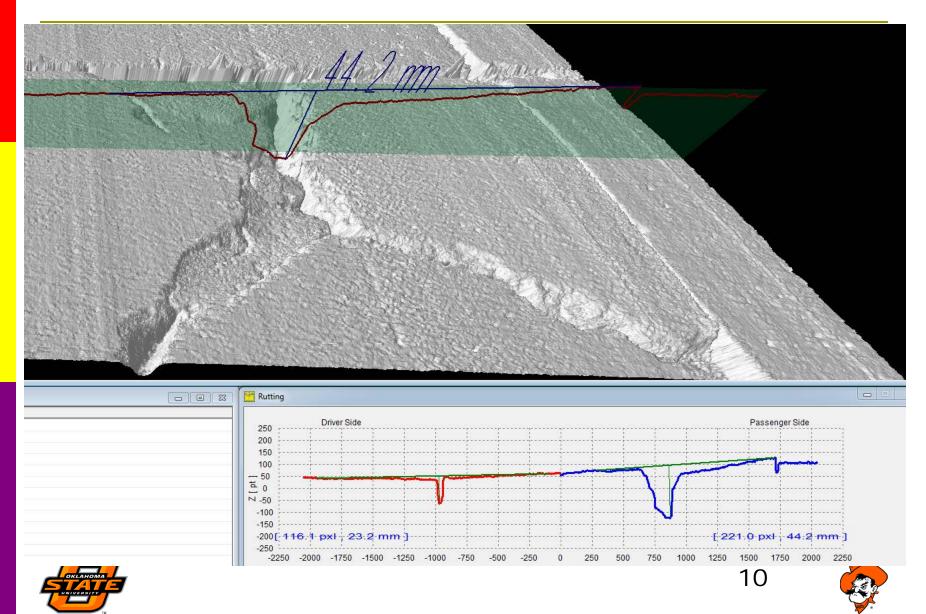


3D Data at 60MPH (100KM/h)



9

3D Data at 60MPH (100KM/h)



Sensor technology: mature Challenges to software solutions To be simple and usable to pavement engineers Confidence in quality of data Utilization and analysis of 1mm data sets

Data Analysis Challenges

Detection Algorithms

- Accuracy
- Robust
- Fast

Result Evaluation

- No benchmark database
- No wide accepted evaluation criteria

Desired distress detection algorithms

Fast

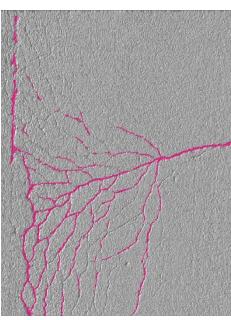
Achieve high scores in both precision and recall rate

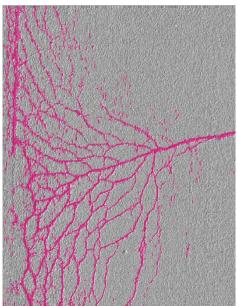
What is the reference?
Is there a "Ground-Truth"?
What to use in benchmarking?
Therefore: an Image Library

- Manually developed with marked cracks
- Multiple-checking for precision/bias
- Expensive; but necessary

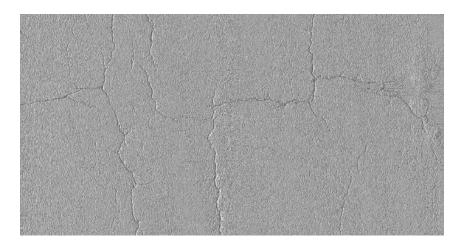
- Precision: correctly identified cracks over total identified cracks
- Recall: correctly identified cracks over total crack

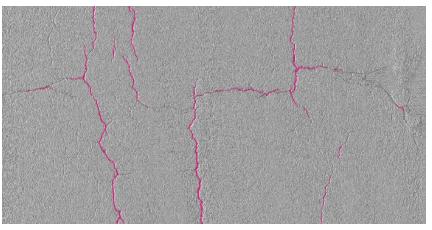




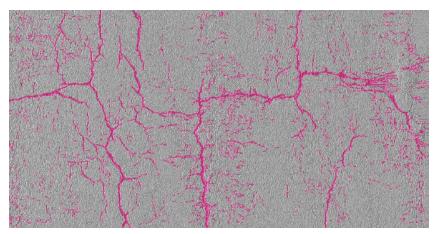


Example of good precision score Example of good recall score





Example of good precision score

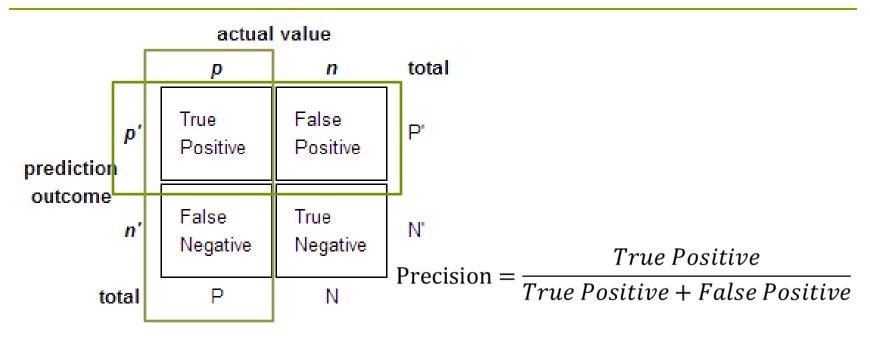


Example of good recall score

Confusion Matrix

	Actual positive	Actual negative
Predicted positive	True Positive	False Positive
Predicted negative	False Negative	True Negative

	Crack	Non-crack
Predicted crack	True Positive	False Positive
Predicted non- crack	False Negative	True Negative



 $Recall = \frac{True \ Positive}{True \ Positive + False \ Negative}$

$$\mathbf{F} = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

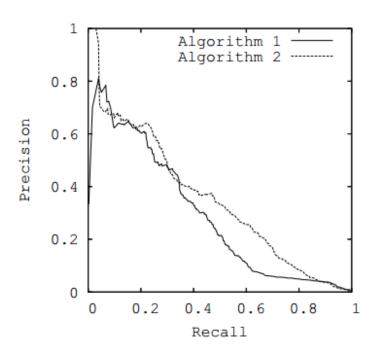
ROC Curve

Receiver Operating Characteristic (ROC curve)

A perfect classifier: at the upper left corner (only the true positives, no false positives & no false negatives)

PR Curve

PR curve: Precision vs Recall Precision as Y axis Recall as X axis Goal: select an algorithm at the upper right corner



Class Imbalance Problem

The total # of a class of data (positive): far less than the total # of another (negative)

Example

- Model 1: 7 out of 10 cracks and 10 out of 10000 normal pavement pixels WRONG
- Model 2: 2 out of 10 cracks and 100 out of 10000 normal pavement pixels WRONG
- If the classifier's performance is determined by the number of mistakes,
 Model 1 (17 mistakes) VS. Model 2 (102 mistakes)

PR Curve Vs ROC Curve

Imbalance pavement image data set:

- Distress pixels are far less than normal pixels
- ROC curve uses false positive, which is affected by the number of negative samples

$$tpr = \frac{tp}{tp+fn}$$

$$fpr = fp \\ fp + tn$$

PR curve focuses on the detection performance of positive samples only

$$\text{Recall} = \frac{tp}{tp + fn} \qquad \qquad \text{Precision} = \frac{tp}{tp + fp}$$

Benchmark Image Sources

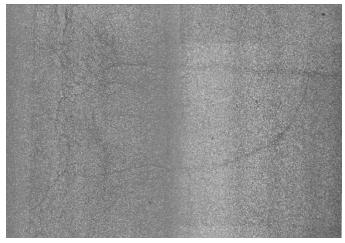
3D Benchmark Image Library

- □ Total size: 1535
- Image group:
 - Flexible Pavement: 4
 - Rigid Pavement: 4
 - High Friction Surface
- Ground truth generation
 - Crack map images
 - Manual visual inspection

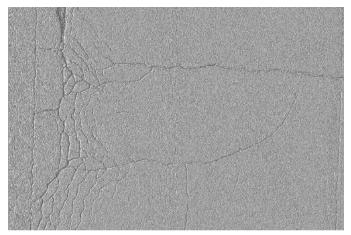
3D Benchmark Image Library

	Flexible Pavement				
Group	Coarse Surface	Good Quality	Bad Quality	Crack Sealing	High Friction
Size	224	255	260	80	61
	Rigid Pavement				
Group	Complex Condition	Good Condition	Texture Pavement	NGCS	
Size	260	285	120	51	

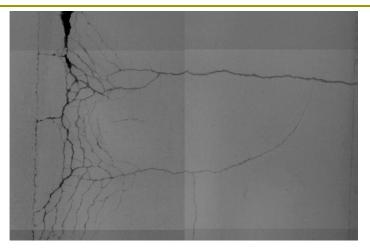
Examples Images



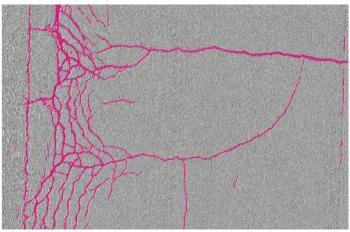
Intensity



Range data openGL visualization



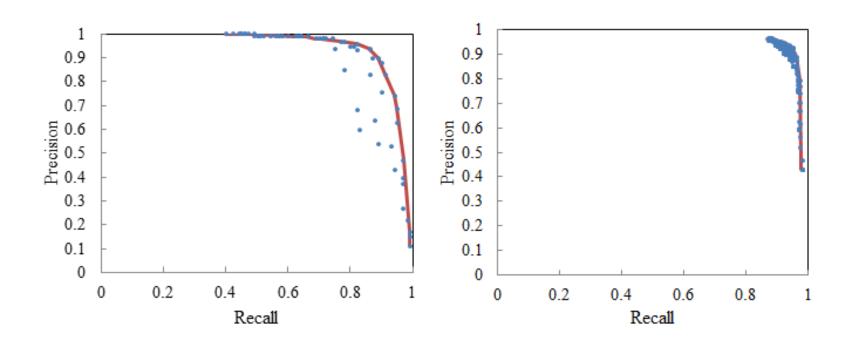
3D Range data in grey image format



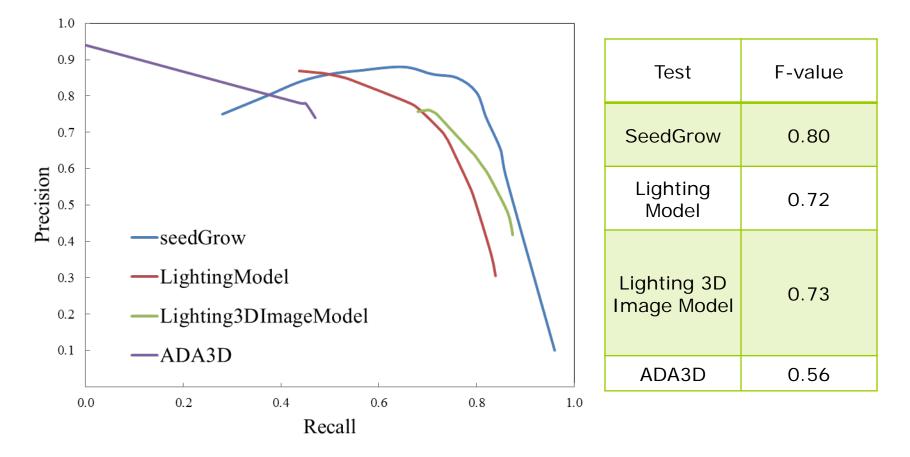
Ground truth manually labeling

Case Studies

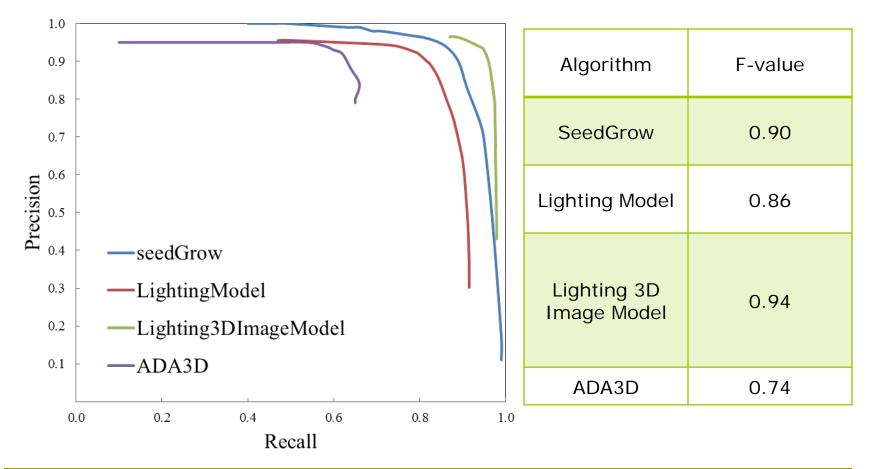
PerformanceSensitivity



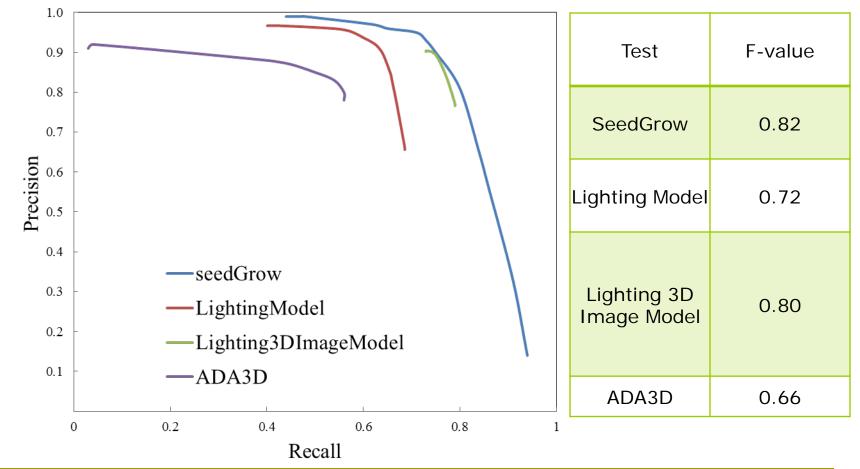
Asphalt Bad Quality

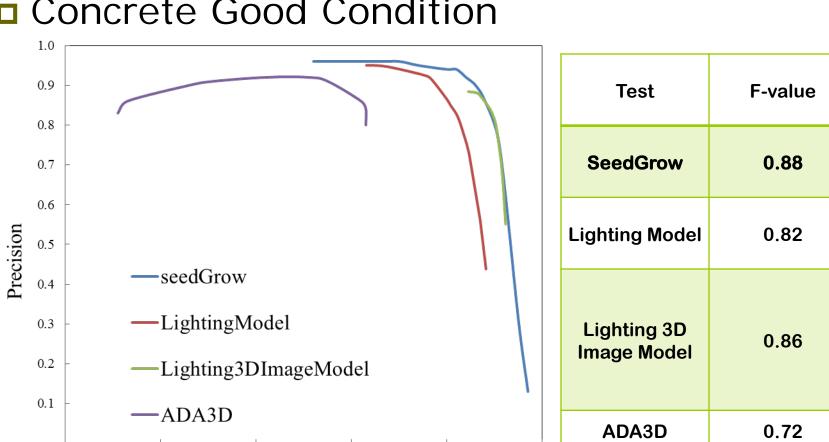


Asphalt Good Quality



Concrete Complex Condition





0.8

1.0

Concrete Good Condition

0.0

0.2

0.4

Recall

0.6

Performance Analysis - F score

Test Group	SeedGrow	Lighting Model	Lighting 3D Image Model	ADA3D
Asphalt Bad Quality	0.80	0.72	0.73	0.56
Asphalt Good Quality	0.90	0.86	0.94	0.74
Concrete Complex Condition	0.82	0.72	0.80	0.66
Concrete Good Condition	0.88	0.82	0.86	0.72
Average	0.85	0.78	0.83	0.67

SeedGrow > Lighting 3D > Lighting Model > ADA3D

Sensitivity Analysis

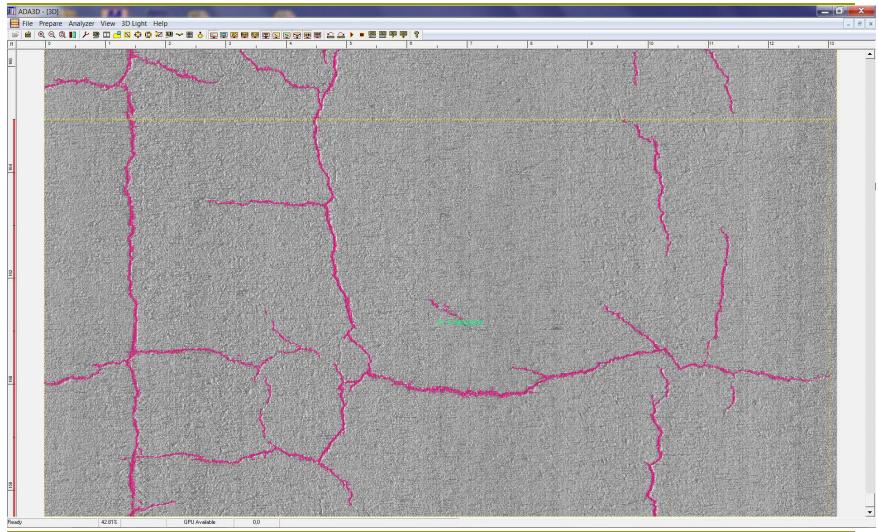
Calculate SD of discrete PR points from top 40% F score

$$SD = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n} + \frac{\sum_{i=1}^{n} (y_i - \bar{Y})^2}{n}}$$

Test Group	SeedGrow	Lighting Model	Lighting 3D Image Model	ADA3D
Asphalt Bad Quality	0.092	0.062	0.015	0.021
Asphalt Good Quality	0.069	0.062	0.020	0.032
Concrete Complex Condition	0.058	0.049	0.008	0.018
Concrete Good Condition	0.053	0.034	0.017	0.020
Average	0.068	0.052	0.015	0.023

Lighting 3D < ADA3D < Lighting Model < SeedGrow

ADA3D Interface



Kelvin C.P. Wang <u>kelvin.wang@okstate.edu</u> Oklahoma State University School of Civil and Environmental Engineering

