Intelligent Device Applications for Real-Time Characterization of Cognitive Loading: The Implications for Distracted Driving

Second International Symposium on Naturalistic Driving Research August 31, 2010

Michael Watkins, Ivan Amaya, Michael Hughes

Pacific Northwest

PNWD-SA-9046

Motivating Hypothesis

- Biometric texting patterns, indicative of cognitive workload, can be measured in-situ
- Image: may allow for the identification and mitigation of distracted vehicle operators.

Background Context and Challenges

- ".....the test-bed vehicle was outfitted with almost every sensor conceivable." Pompei JF, et al. 2002, An Automobile-Integrated System for Assessing and Reacting to Driver Cognitive Load.
- Examples of relatively recent countermeasures.
 - "Key2SafeDriving"
 - iZup by Illume Software Inc.
 - ZoomSafer by ZoomSafer Inc.

Pompei JF, et al., 2002. Pacific Northwes

NATIONAL LABORATORY

How does a "Distracted Texter" behave?

Consider the Following

Texting *Driver* distraction is the voluntary or involuntary diversion of attention from the primary **texting** *driving* task not related to impairment (from alcohol, drugs, fatigue, or a medical condition) where the diversion occurs because the **texter** *driver* is performing an additional task (or tasks) and temporarily focusing on an object, event, or person not related to **texting** *driving*. The diversion reduces a **texter's** *driver's* situational awareness, decision making, and/or performance resulting, in some instances, in a collision or near-miss or corrective action by the **driver** and/or other road user.*

*Adapted from the Australian Road Safety Board, definition of a distracted driver, 2006.

Pacific Northwest NATIONAL LABORATORY

How Fast Do People Text?

- Melissa Thompson of Manchester, England
- The world's fastest texter.....August 23, 2010.

"the razor-toothed piranhas of the genera Serrasalmus and Pygocentrus are the most ferocious freshwater fish in the world. In reality they seldom attack a human."

Melissa texted this 160 character message in just under 26 s or at a keystroke frequency of about 6 Hz !

Pacific Northwes NATIONAL LABORATORY

Cell Phone with QWERTY Keypad Nokia 6790 Surge®

Pacific Northwest

Application

- Data logging runs in the background.
- User operates the handset in a normal fashion.
- Application logs both key down and key up events with timestamps.
- Data are stored in a file to be analyzed later.
- Prototype application installed on a Nokia 6790 Surge.

Logging Function – Baseline Characterization

- User key depression was simulated by using a reciprocating piston.
- The handset was held in a fixed position using a small vise clamp.
- Data acquisition was initiated and allowed to run in the background.
- A selected key was repeatedly depressed at a fixed frequency.
- Several frequencies, reflecting the dynamic range of users, were used.
- The logged data were downloaded to a PC for analysis.

Characterization of Logging Function

Method of Key Actuation.

Pacific Northwest NATIONAL LABORATORY

Characterization of Logging Function

Method of Key Actuation.

Pacific Northwest NATIONAL LABORATORY

Characterization of Logging Function

Method of Key Actuation.

Sinusoidal pulses were used to excite the key at frequencies of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 20 Hz

Example of Data

Repeated key actuation at 5 Hz (period = 200 ms) n = 100, CV = Coefficient of Variation.

Key Code	Event Type	Time Stamp	Delta (ms)
68	Down	63449802447537000	199
68	Down	63449802447736100	200
68	Down	63449802447936100	201
68	Down	63449802448137000	200

Mean = 200 ms Std Dev = 3.16 ms CV = 1.58%

Pacific Northwest

NATIONAL LABORATORY

Example of Repetitive Key Strokes Data

 \blacktriangleright 5 Hz excitation (period = 200 ms).

Example of Repetitive Key Strokes Data

Distribution of delta between recorded key down

5 Hz excitation.

NATIONAL LABORATORY

Cell Phone with QWERTY Keypad Nokia 6790 Surge®

Example of Repetitive Key Strokes Data

▶ 1 - 20 Hz excitation (period = 1000 - 50 ms).

STDV of Measured Key Stroke Period vs. Programmed Period

Example of Repetitive Key Strokes Data

▶ 1 - 20 Hz excitation (period = 1000 - 50 ms).

CV of Measured Key Stroke vs Programmed Period T

NATIONAL LABORATORY

Biometric Digraph Convention for Users

- 1. Horizontal Digraph: time between horizontally adjacent keys.
- 2. Vertical Digraph: time between vertically adjacent keys.
- 3. Diagonal Digraph: time between non-adjacent diagonal keys.
- 4. Non-Adjacent Horizontal Digraph: time between non-adjacent horizontal keys.
- 5. Non-Adjacent Vertical Digraph: time between non-adjacent vertical keys.
- 6. Non-Adjacent Diagonal Digraph: time between non-adjacent diagonal keys.
- 7. Error Rate: use of Backspace key, repeated keys, word length, extra spaces, etc.
- 8. Key Hold Time: time difference between pressing a key and releasing it.

NATIONAL LABORATORY

Example of User Data – Learning Curve

- Users typed message 5 times to reduce "learning curve" effect.
- Mean time between successive keystrokes is illustrated.

Learning Curve Effect on Digraphs Mean

NATIONAL LABORATORY

Example of User Data

Scatter plot of digraphs for trials 4 and 5 for a user.

Pacific Northwest NATIONAL LABORATORY

Conclusions

- The prototype data logger has the required temporal resolution to capture user key stroke dynamics.
- Opportunity to gain new insights for naturalistic driving R&D.
- Potential for new distraction countermeasure.
 - Distinguish vehicle operators from passengers.
 - Adaptable and scalable to level of cognitive impairment.

Advantages

- Vehicle independent functions for personal, mass transit and cargo vehicles.
- Device independent implementable as a low-cost software application installed on cell phones.
- Eliminates the need for secondary in-vehicle devices.
- Viability of on-board real-time data analysis.
- Data logger can be integrated with other data acquisition systems via Bluetooth or other wireless data interface.

