

Advanced Roadway Delineation and Lighting Systems

Dr. Ronald B. Gibbons

Group Leader, Lighting and Infrastructure Technology

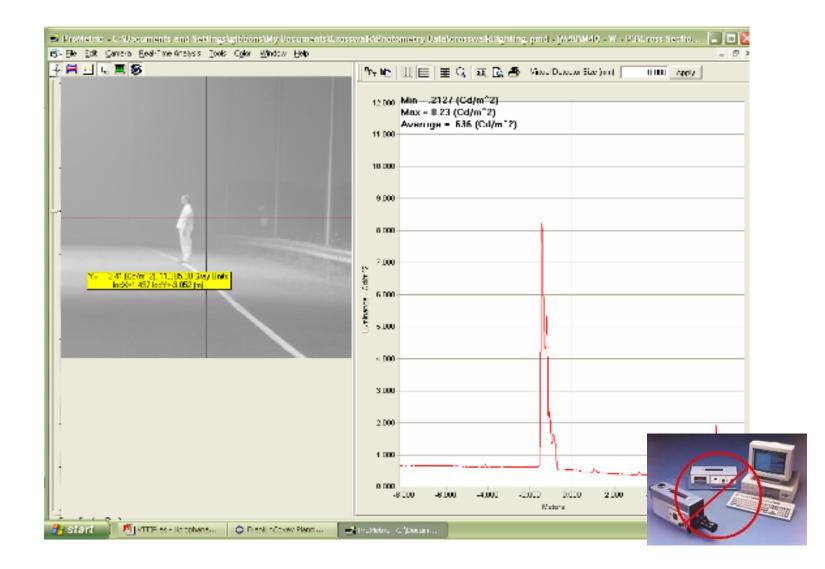
TRANSPORTATION INSTITUTE

Subject Area Strategic Goal

- Improving nighttime roadway visual environment through the assessment of behavior, establishment of visibility needs, and control of adverse lighting effects.
 - Night driving has been described as a situation for which humans have not evolved, leaving our visual system inadequate and inefficient for certain tasks (Rumar, 1990).
- Our focus:
 - Provide the understanding and systems necessary to "evolve" the nighttime driving task for the driver.

STSCE ARDLS Projects

Tool Development Luminance Camera Color Camera Roadway Lighting Mobile Measurement System


> Metric Development Glare Metrics Luminance Metrics

> > Application Development Object Color Contrast Visibility Modeling Roadway Lighting and Safety Luminance Metrics

Luminance Camera

- The traditional methods for the photometric evaluation of Roadway Lighting and Delineation Research have proven to be inadequate
 - We have developed a dynamic method to evaluate the luminance of the visual environment from a moving vehicle

CCD Photometry

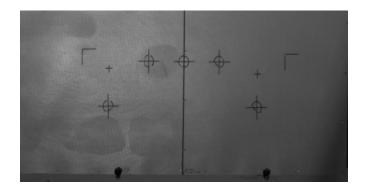
Contrast Assessment

12 bit Point Grey Digital Firewire camera.

> Calibrated against a Prometric Still Luminance Camera

•Varying shutter and gain values determine the range of luminance measured

> • 2 cameras can be coupled to increase dynamic response

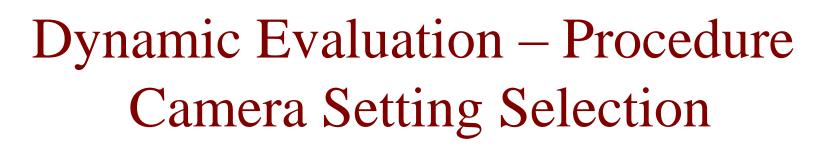

 Individual images are stored for later analysis

Calibration - Procedure

- Controlled environment
- Simultaneous image capture with ProMetric photometer and Luminance Cameras
 - Software automatically adjusts Luminance Camera variables

Light Level (cd/m2)	24.1, 15.6, 7.99, 1.87
Camera Gain (dB)	24, 21, 18, 15, 12, 9, 6, 3, 0, -2.25
Camera Shutter (ms)	267, 213, 159, 105, 51, 41, 36, 31, 26, 21, 16, 11, 6, 1

4 Light levels 10 Gain values chosen <u>x 14 Shutter values chosen</u> 560 images captured by Luminance Camera


Calibration - Procedure

Overlay of images completed automatically through software

Pixel Value	2.13	2.13	2.10
Luminance (cd/m ²)			
	2.13	2.13	2.10
+ +	2.08	2.08	2.13
grayvalues			
	2608	2704	2816
$ \begin{bmatrix} + + + + + + + + + + + +$	2704	2928	2624
	3152	2848	2656

Estimation of maximum luminance

Darkened image High pixel saturation

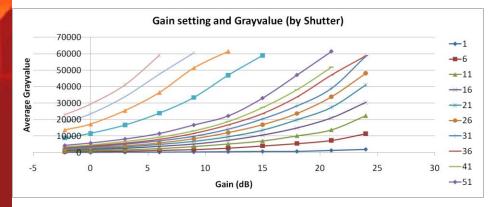
GAIN (dB) -2.25 899 0 732 3 477	2.1 120.8	96.2	16 66.6	21 48.4	26	31	36	41	51	105	159	213	267
0 732	2.1 120.8		66.6	48.4	40.0						155	213	20/
		69.1			40.6	34.7	30.1	26.5	21.7	10.8	14.0	6.8	7.
3 477		00.1	47.2	39.3	32.2	25.9	23.2	20.7	15.8	7.8	5.4	3.6	3.0
	7.8 89.3	49.2	34.9	26.8	21.7	19.3	15.0	14.0	12.5	5.5	3.5	2.7	2.2
6 332	2.8 64.0	35.1	24.5	19.4	15.2	13.3	12.6	9.9	7.7	3.7	2.5	1.9	1.(
9 214	l.1 40.6	23.4	17.6	12.6	10.0	9.6	7.7	6.1	5.5	2.8	1.7		
12 165	5.4 33.6	18.6	12.0	9.7	7.5	6.1	5.6	5.2	3.9	2.0			
15 107	7.3 22.9	12.7	9.8	6.8	5.4	4.4	3.7	3.2	2.7	1.7			
18 81	.2 14.8	8.2	6.2	3.9	3.2	2.5	2.4	2.0	1.8				
21 56	6.1 12.1	6.9	3.8	3.3	2.6	2.2	1.8	1.8					
24 41	.8 7.0	5.2	2.4	2.0	1.8	1.8	1.7						

Increase in image noise

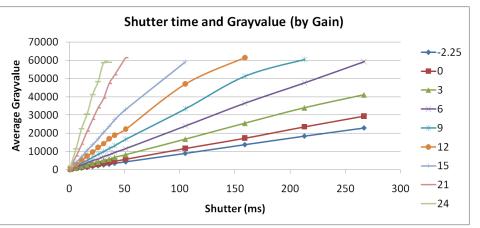
Dynamic Evaluation - Results

Manual

Automatic


Driving Transportation With Technology

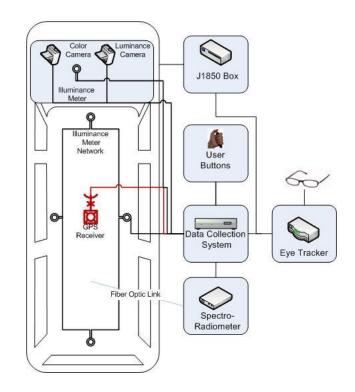
High presence of blurring and saturation with auto configuration


Calibration - Results

Pixel analysis

Positive relationship of Luminance Camera gray value and gain

Positive relationship of Luminance Camera gray value and shutter



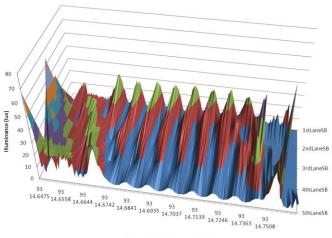
RLMMS

- We have developed the Roadway Lighting Mobile Measurement System to allow us to assess performance in-situ
 - This system allows us to travel and perform assessments of installed lighting systems
 - The system has been used in:
 - VTTI
 - Anchorage
 - San Diego
 - Hawaii
 - San Jose
 - Rural Intersections
 - Iowa
 - Virginia

Equipment

- External
 - Novatel GPS device mounted at the center of the vehicle
 - Illuminance Meter Grid
 - Four weatherproof heads mounted horizontally on the roof of the vehicle in the center of the wheel path

- Internal
 - Illuminance Meter
 - One mounted vertically inside the windshield
 - Luminance Camera
 - VTTI-developed luminance camera to monitor the entire scene
 - Luminance is derived from a calibration procedure performed on each camera
 - Color Camera
 - 1280x960 RGB FireWire camera
 - J1850 box
 - Returns vehicle information from internal vehicle CAN network
 - Spectroradiometer
 - Ocean Optics HR4000
 - Measures spectral information through a fiber optic link to a cosine or sphere collector on vehicle roof
 - Buttons
 - Small push buttons mounted in vehicle to capture human response events
 - Eye Tracker
 - Arrington Research Binocular Eye Tracking System


System Layout

RLMMS Integration

Longitude - Start --> End (degrees minutes.)

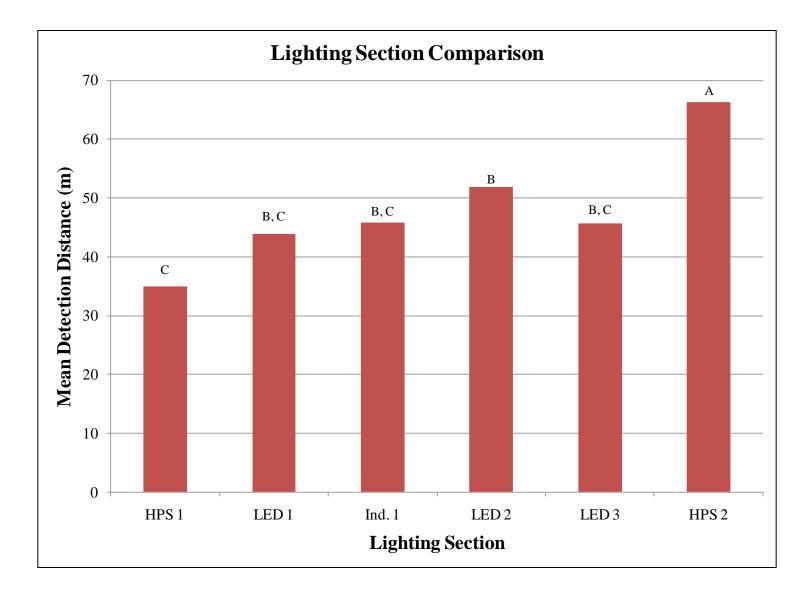
Alternative Light Sources

- Four on-site investigations have been undertaken to investigate the impact of Broad Spectrum Lighting on Driver Performance
 - Anchorage
 - San Diego
 - San Jose
 - Hawaii
- In each experiment, the RLMMS measurement system was used to measure light source and observer performance
- Small Targets were used along the side of the roadway to provide an observation target

 6 different lighting systems were tested along an urban street in Anchorage

• HPS, LED, Induction

 27 Participants from the public were tested for object detection and public opinion


• Using the RLMMS

•Different Colored targets

- Red
- Green
- Blue
- Gray
- •2 Different Sizes
 - 7 inches
 - 18 inches

Initial Results

Energy Consumption

System	Description	Watts/ Lamp	Watts/Luminaire
1	Dimming HPS	250	257
2	BetaLED	234	234
3	Kim Induction	165	165
4	Lumecon	160	160
5	Kim LED	146	146
6	Existing HPS (non-dim)	400	460

Table 1: Lighting system power consumption