Estimating Crash Risk Using Naturalistic Driving Study Data

Feng Guo, Ph.D.
Virginia Tech Transportation Institute
Department of Statistics
Virginia Tech

September 1st 2010
The Second International Naturalistic Driving Symposium
Estimating Crash Risk: Outline

• Overview

• Case-cohort and case-crossover approaches: results and lessons learned

• Near-crashes as crash surrogates for risk assessment purpose
Naturalistic Driving versus Crash Database

<table>
<thead>
<tr>
<th></th>
<th>Crash Database</th>
<th>Naturalistic driving data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample population</td>
<td>All drivers: limited selection bias</td>
<td>Participants only: selection bias</td>
</tr>
<tr>
<td>Source</td>
<td>Police report: small proportion of actual accidents</td>
<td>Data collection system: all safety events</td>
</tr>
<tr>
<td>Information source</td>
<td>Driver/witness statements, retrospective: information bias</td>
<td>High resolution video and instrument recording</td>
</tr>
<tr>
<td>Driver behavior</td>
<td>Limited/unreliable information</td>
<td>Accurate/detailed information through data reduction</td>
</tr>
</tbody>
</table>
Risk Assessment

• Presence of a factor at crash ≠ Risk

• Comparing exposure status for safety events and for normal driving conditions.

• Naturalistic driving data provides detailed and accurate exposure information
Modeling Crash Likelihood Framework

Data collection

Identify Safety Events

Baseline sampling

Data reduction (event/baseline)

Statistical Modeling

Study Design
Modeling 100-Car: Case-Cohort Approach

- Sample short (6 second) epochs from the videos
- Sampling Scheme: Random sampling stratified by vehicle travel time
- Independent of crash/near-crash
Case-Crossover

Exposure information collected

Sample exposure immediate before crashes

Sample exposure for time interval some period before crash

Control exposure ▲ Case Exposure ● Crash
Matched Factors

• Driver ID
• Day of week (weekday versus weekend)
• Time of day (± 2 hours)
• Same GPS Location (± 100 Meters OR match to relation to junction)
• Must occur prior to crash/near-crash occurrence.

• Goal: 15 baselines for every crash/near-crash event.
Differences between the Case-Crossover and Case-Control
Individual Variation: Good Driver, Bad Driver

Teen driver crash/near crash rate

Number of safety events by subject (100-Car)
Case-Cohort: Generalized Mixed Effect Model

Model specification

\[y_i = \begin{cases}
1 & \text{Crash} \\
0 & \text{No Crash}
\end{cases} \]

\[y_i \sim \text{Binomial}(1, p_i) \]

\[\log\left(\frac{p_{ij}}{1 - p_{ij}} \right) = X_{ij}\beta + Z_{ij}\alpha_i \]

where \(p_i \) is the probability of crash for \(i \)th observation

\(X_{1i} \) is the 1st covariate for event \(i \);

\(\beta \)'s are the regression parameters

\(\alpha_i \) is the driver specific random random effect
Case-Crossover: Conditional Logistic Regression

Let p_{ij} be the probability of crash/near-crash for jth observation in ith matched set.

Define

$$Y_{ij} = \begin{cases}
1 & \text{if the jth observation in ith matched set is a crash/near-crash.} \\
0 & \text{if the jth observation in ith matched set is a baseline.}
\end{cases}$$

The matched sampling mechanism leads to:

$$\sum_j Y_{ij} = 1$$

$$\text{logit}(p_{ij} | \sum_j Y_{ij} = 1) = \beta \ast \text{drowsy}_{ij},$$

In this model $\exp(\beta)$ is the estimated OR.
Case-Cohort: Crash Risk

- Drowsiness increases crash risk by 6 times
- Complex secondary task increase the risk by 3 times
- Crashes are more likely to happened in roadway junction areas (6-fold increase)
- Crashes are 5 times more likely to happened on wet, snowy, or muddy road surface.
Comparing Secondary Task Engagement OR for Case-Crossover versus Case-Control

<table>
<thead>
<tr>
<th>Distraction</th>
<th>Case Crossover Odds Ratio</th>
<th>95% Odds Ratio Confidence Limits</th>
<th>Case-Control Odds Ratios</th>
<th>95% Odds Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>0.8</td>
<td>0.62</td>
<td>1.05</td>
<td>1.2</td>
</tr>
<tr>
<td>Moderate</td>
<td>1.3</td>
<td>1.00</td>
<td>1.70</td>
<td>2.1</td>
</tr>
<tr>
<td>Complex</td>
<td>2.1</td>
<td>1.19</td>
<td>3.58</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Crash Risk Increase Monotonically with Total Eyes Off Forward Roadway

Odds Ratio Point Estimate/Confidence Intervals

Total TEOR (seconds)
Percent TEOR (out of 15 seconds)
Comparison of Case-Cohort and Case-Crossover

• Case-Cohort: Greater generalizability to not only driver behavior but also environmental and roadway risk assessment.

• Case-Cohort: Simpler to conduct and less resource intensive.

• Case-Crossover: Greater precision as potential confounding factors are controlled through baseline sampling.
Can Near-Crashes Serve as Crash Surrogates?

• They are different by definition!

• It depends on the purpose the study.
 – This analysis focuses on the impacts for risk assessment purpose.
Crash Surrogate

- Less-severe events happen more frequently than severe events
- Severe events can be reduced by reducing less severe events

1. The causal mechanism for surrogates (near-crashes) and crashes are the same or similar.
2. There is a strong association between the frequency of surrogate measures and crashes under different settings.
Driver Reaction on Crash and Near-crash

The image presents a flowchart outlining the relationship between different factors and maneuvers in the context of crash and near-crash events. The flowchart contains the following elements:

- **Pre-Incident Maneuver**
- **Precipitating Factor**
- **Evasive Maneuver**
- **Contributing Factors**

All Conflict Types

<table>
<thead>
<tr>
<th>i</th>
<th>Crash</th>
<th>Near-Crash</th>
<th>Reaction</th>
<th>No reaction</th>
<th>Perc. Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>45</td>
<td>723</td>
<td>Reaction</td>
<td>5</td>
<td>36%</td>
</tr>
<tr>
<td>No-Reaction</td>
<td>23</td>
<td>37</td>
<td>No reaction</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Perc. Reaction</td>
<td>66%</td>
<td>95%</td>
<td>Perc. Reaction</td>
<td>36%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Conflict with Leading Vehicle

- **Reaction**: 5 Crash, 377 Near-Crash
- **No reaction**: 9 Crash, 0 Near-Crash
- **Perc. Reaction**: 36% Crash, 100% Near-Crash
Frequency Relationship

<table>
<thead>
<tr>
<th>Factors</th>
<th>Constant Crash to Near-Crash Ratio</th>
<th>Measure for Association</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p-value</td>
<td>Significant</td>
</tr>
<tr>
<td>Gender</td>
<td>0.26</td>
<td>NO</td>
</tr>
<tr>
<td>Age Group</td>
<td>0.23</td>
<td>NO</td>
</tr>
<tr>
<td>Level of Service (LOS)</td>
<td><0.001</td>
<td>YES</td>
</tr>
<tr>
<td>Lighting Conditions</td>
<td>0.414</td>
<td>NO</td>
</tr>
<tr>
<td>Road Alignment</td>
<td>0.02</td>
<td>YES</td>
</tr>
<tr>
<td>Road Surface Condition</td>
<td>0.02</td>
<td>YES</td>
</tr>
<tr>
<td>Weather</td>
<td>0.32</td>
<td>NO</td>
</tr>
</tbody>
</table>

\[y_i \sim \text{Poisson}(\lambda_i) \]

\[\log(\lambda_i) = \beta_0 + \beta_1 x_i \]

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-2.31</td>
</tr>
<tr>
<td>Near-Crash</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Sensitivity Analysis

The graph shows the odds ratio (95% CI) for different factors: Distraction, Lighting, Road Surface, Weather, and Drowsiness. The blue line represents 'Crash Only' while the red line represents 'Crash & Near-Crash'.
Surrogate Measure: Summary

• Using crashes plus near-crashes will lead to a conservative but more precise result in risk assessment.

• For smaller studies with an insufficient number of observed crashes, there is a definite benefit to using near-crashes as a crash surrogate.

• Caution should be used when interpreting the results of risk evaluation.