

Estimating Crash Risk Using Naturalistic Driving Study Data

Feng Guo, Ph.D. Virginia Tech Transportation Institute Department of Statistics Virginia Tech

September 1st 2010

The Second International Naturalistic Driving Symposium

Estimating Crash Risk: Outline

Overview

 Case-cohort and case-crossover approaches: results and lessons learned

 Near-crashes as crash surrogates for risk assessment purpose

Naturalistic Driving versus Crash Database

	Crash Database	Naturalistic driving data
Sample population	All drivers: limited selection bias	Participants only: selection bias
Source	Police report: small proportion of actual accidents	Data collection system: all safety events
Information source	Driver/witness statements, retrospective: information bias	High resolution video and instrument recording
Driver behavior	Limited/unreliable information	Accurate/detailed information through data reduction

Risk Assessment

•Presence of a factor at crash \neq Risk

•Comparing exposure status for safety events and for normal driving conditions.

•Naturalistic driving data provides detailed and accurate exposure information

Modeling Crash Likelihood Framework

Modeling 100-Car: Case-Cohort Approach

- Sample short (6 second) epochs from the videos
- Sampling Scheme: Random sampling stratified by vehicle travel time
- Independent of crash/near-crash

Case-Crossover

Sample exposure immediate before crashes

Sample exposure for time interval some period before crash

TECHNOLOGY

DRIVING TRANSP

Matched Factors

- Driver ID
- Day of week (weekday versus weekend)
- Time of day (± 2 hours)
- Same GPS Location (± 100 Meters OR match to relation to junction)
- Must occur *prior to* crash/near-crash occurrence.

• Goal: 15 baselines for every crash/near-crash event.

Individual Variation: Good Driver, Bad Driver

Case-Cohort: Generalized Mixed Effect Model

Model specification

$$y_i = \begin{cases} 1 & Crash \\ 0 & No \ Crash \end{cases}$$

 $y_i \sim Binomial(1, p_i)$

$$\log(\frac{p_{ij}}{1-p_{ij}}) = \mathbf{X}_{ij}\boldsymbol{\beta} + \mathbf{Z}_{ij}\boldsymbol{\alpha}_i$$

where p_i is the probability of crash for *i*th observation X_{1i} is the 1st covariate for event *i*; β 's are the regression parameters \mathbf{a}_i is the driver specific random effect

Case-Crossover: Conditional Logistic Regression

Let p_{ij} be the probability of crash/near-crash for *jth* observation in *ith* matched set.

Define

 $Y_{ij} = \begin{cases} 1 & \text{if the jth observation in ith matched set is a crash /near - crash.} \\ 0 & \text{if the jth observation in ith matched set is a baseline.} \end{cases}$

The matched sampling mechanism leads to:

$$\sum_{j} Y_{ij} = 1$$

$$\operatorname{logit}(p_{ij}|\sum_{j}Y_{ij}=1) = \beta * \operatorname{drowsy}_{ij},$$

In this model exp (β) is the estimated OR.

Case-Cohort: Crash Risk

DRIVING TRANSPORTATION WITH TECHNOLOGY

Comparing Secondary Task Engagement OR for Case-Crossover versus Case-Control

Distraction	Case Cross-	95% Odds Ratio		Case-Control	95% Odds Ratio	
	over Odds	Confidence Limits		Odds Ratios	Confidence	
	Ratio				Ι	Limits
Simple	0.8	0.62	1.05	1.2	0.88	1.57
Moderate	1.3	1.00	1.70	2.1	1.62	2.72
Complex	2.1	1.19	3.58	3.1	1.72	5.47

Crash Risk Increase Monotonically with Total Eyes Off Forward Roadway

DRIVING TRANSPORTATION WITH TECHNOLOGY

Comparison of Case-Cohort and Case-Crossover

- Case-Cohort: Greater generalizability to not only driver behavior but also environmental and roadway risk assessment.
- Case-Cohort: Simpler to conduct and less resource intensive.
- Case-Crossover: Greater precision as potential confounding factors are controlled through baseline sampling.

Can Near-Crashes Serve as Crash Surrogates?

• They are different by definition!

- It depends on the purpose the study.
 - This analysis focuses on the impacts for risk assessment purpose.

Crash Surrogate

- Less-severe events happen more frequently than severe events
- Severe events can be reduced by reducing less sever events

- 1. The causal mechanism for surrogates (nearcrashes) and crashes are the same or similar.
- 2. There is a strong association between the frequency of surrogate measures and crashes under different settings.

Driver Reaction on Crash and Near-crash

All Conflict Types

Conflict with Leading Vehicle

i	Crash	Near-Crash		Crash	Near-Crash
Reaction	45	723	Reaction	5	377
No-Reaction	23	37	No reaction	9	0
Perc.			Perc.		
Reaction	66%	95%	Reaction	36%	100%

Frequency Relationship

	Constant Crash to Near-Crash		Measure for Association		
	Ra	tio			
Factors	p-value	Significant	R-squared	Adjusted R^2	
Gender	0.26	NO	NA	NA	
Age Group	0.23	NO	0.91	0.87	
Level of Service	<0.001	YES	0.5 (0.72*)	0.33 (0.45*)	
(LOS)					
Lighting	0 / 1 /	NO	0.97	0.95	
Conditions	0.414				
Road Alignment	0.02	YES	0.99	0.99	
Road Surface	0.02	VEC	0.99	0.99	
Condition	0.02	TES			
Weather	0.32	NO	0.99	0.99	

$y_i \sim Poisson(\lambda_i)$		Coefficient	<i>p</i> -value
	Intercept	-2.31	<.0001
$\log(\lambda_i) = \beta_0 + \beta_1 x_i$	Near-Crash	0.21	<.0001

Sensitivity Analysis

CHNOLOGY

Surrogate Measure: Summary

- Using crashes plus near-crashes will lead to a conservative but more precise result in risk assessment.
- For smaller studies with an insufficient number of observed crashes, there is a definite benefit to using near-crashes as a crash surrogate.
- Caution should be used when interpreting the results of risk evaluation.

