Federal Motor Carrier Safety Administration

Panel Session: Driving Transportation Policy with Naturalistic Data

FMCSA Uses of Naturalistic Driving Data

Bill Bronrott

FMCSA Deputy Administrator

Wednesday, September 1, 2010

U.S. Department of Transportation

Federal Motor Carrier Safety Administration

Maryland Legislature

Importance of Naturalistic Driving Data

100-Car Naturalistic Driving Study

Car/Truck Interactions

A total of 142 car/truck interaction-critical incidents

Car drivers initiated 117 (82.4%) incidents; truck drivers initiated

25 (17.6%) incidents

Incidents attributable to car drivers:

lane change without sufficient gap

entering a roadway

left turn without clearance

• Incidents attributable to truck drivers:

insufficient clearance entering a roadway

backing in roadway in presence of traffic

late braking for stopped/stopping traffic

wide turn into adjacent lane

Improved driver behavior for car drivers and increasing defensive driving techniques needed for truck drivers

CMV Web-Based Driving Tips

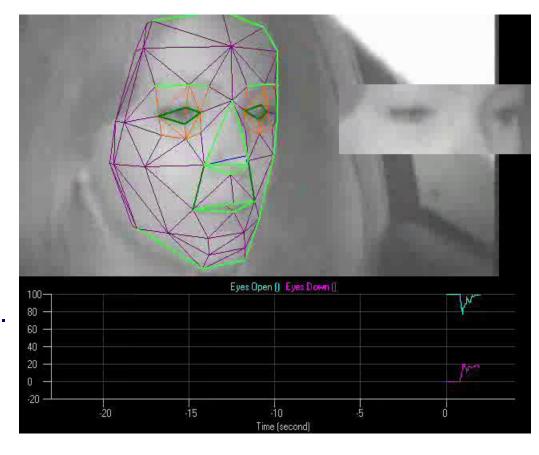
- CMV Web-Based Driving Tips are supported by naturalistic driving video
- Video clips show examples of driver errors meant to motivate CMV drivers to become safer drivers
- As a training exercise, each video clip is followed by a set of questions to encourage discussion regarding a driver's behavior

Driver Distraction Rulemaking

CVO Driver Distraction Study

- Study investigated the prevalence of driver distraction in CMV safety-critical events recorded in a naturalistic data
- Data included over 200 truck drivers and data from 3 million miles of operation
- Odds ratios (OR)
 were calculated
 to identify tasks
 that were high risk

Risks Associated with Secondary Tasks


Task	Odds Ratio	LCL	UCL	Frequency of Safety-Critical Events	Frequency of Baselines
Text message on cell phone	23.24	9.69	55.73	31	6
Interact with/look at dispatching device	9.93	7.49	13.16	155	72
Write on pad, notebook, etc.	8.98	4.73	17.08	28	14
Use calculator	8.21	3.03	22.21	11	6
Look at map	7.02	4.62	10.69	56	36
Dial cell phone	5.93	4.57	7.69	132	102
Talk or listen to hand-held phone	1.04	0.89	1.22	195	837
Talk or listen to hands-free phone	0.44	0.35	0.55	91	901
Talk or listen to CB radio	0.55	0.41	0.75	50	399

Safety System Development

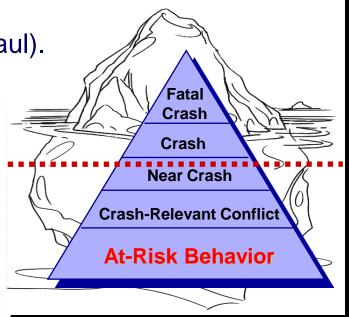
Driver Fatigue Warning System (SBIR)

- Develop and test prototype system that unobtrusively detects and alerts drowsy drivers to avoid hazardous conditions
- Goal: to develop and commercialize a multimeasure fatigue monitoring and warning system in 2013.

Safety System Testing

FAST DASH - FMCSA Advanced System Testing utilizing a Data Acquisition System on the Highways

- Conduct fast-turnaround and independent evaluation of promising safety technologies
- FMCSA will request, via its website, that original equipment technology vendors submit promising safety technologies for testing and evaluation



Onboard Monitoring FOT

- Driver performance parameters monitored by OBM:
 - Hard Braking
 - Lane Departures
 - Driver Fatigue

- Hard Steering
- Lane Position
- Driver Alertness
- Safety Belt Use
- Hours of Service
- Turn Signal Use

- Experimental Plan:
 - 3 fleets participating (2 L/SH and Long Haul).
 - 270 instrumented CMV & include more than 750 CMV drivers.
 - 18 months of continuous data collection.
 - Collected naturalistic driving data for nearly 40 million miles of driving data.

