

Linking Large Data Sets to Roadway Data

Shih-Ching Wu and Shane McLaughlin Virginia Tech Transportation Institute

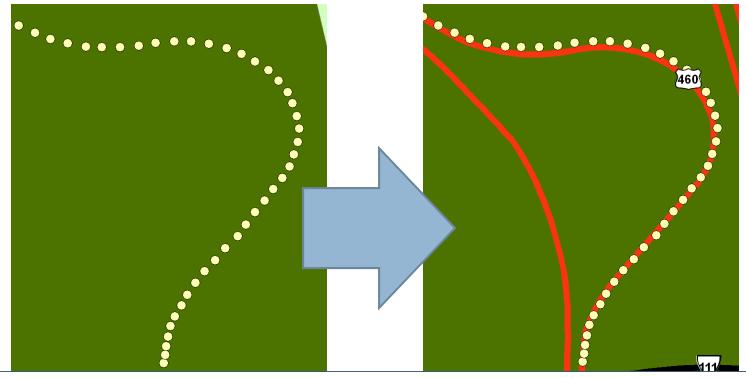
August 29, 2012

Outline

- Naturalistic Driving Study (NDS) Data
- Location-based Research Questions
- Linkage between NDS Data and Maps
 - Map Matching Algorithm
 - Large Scale Data Processing

Naturalistic Driving Study Data

- Large amount of data
 - Terabyte ~ petabyte collections
- Varity of information collected from
 - Cameras, radar, vehicle network, GPS
- Do NOT collect location information directly from any devices
- Can be derived from GPS latitude and longitude coordinates

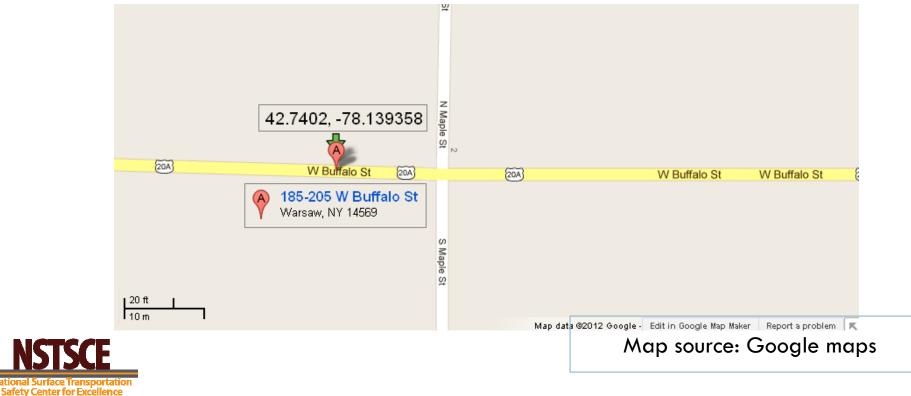

Location-based Research Questions

- Where did crash events occur the most?
- What's the percent of time or mileages traveled on each road type?
 - Interstate, U.S./primary/secondary highway, etc..
- Which areas/roads are people speeding?
- Intersection traverse
- Origin destination

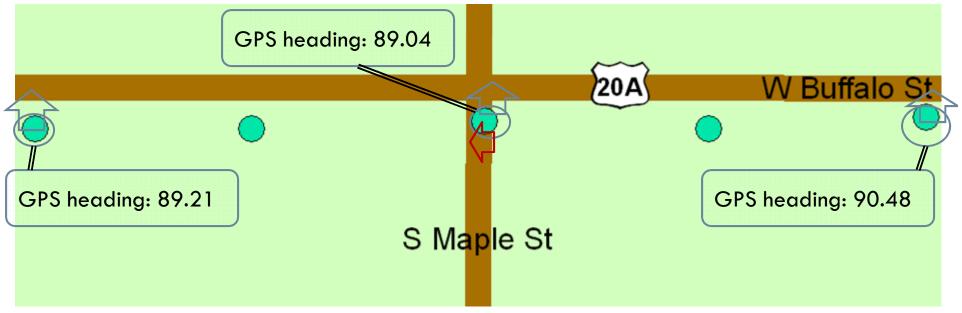
Map Matching Process

Associating GPS traces on road segments

Knowledge of which road segments vehicles are on

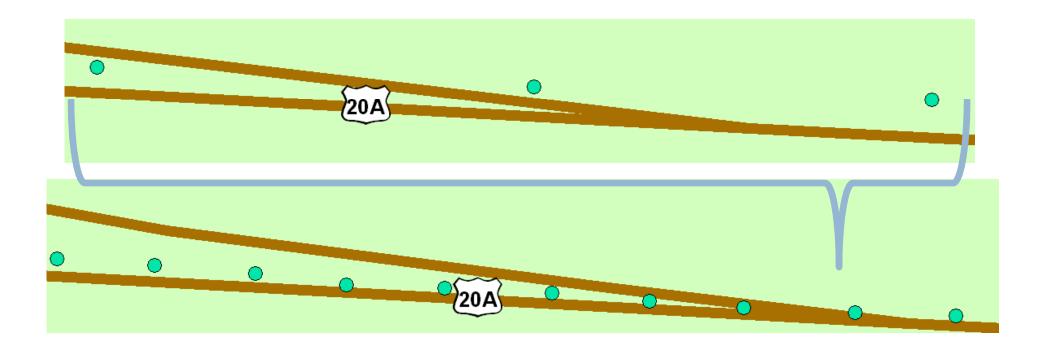

Elements of Map Matching Process

- Data
 - GPS data
 - Maps
- Method for conducting association
 - Map-matching algorithms
- Software
 - Geo-processing tools

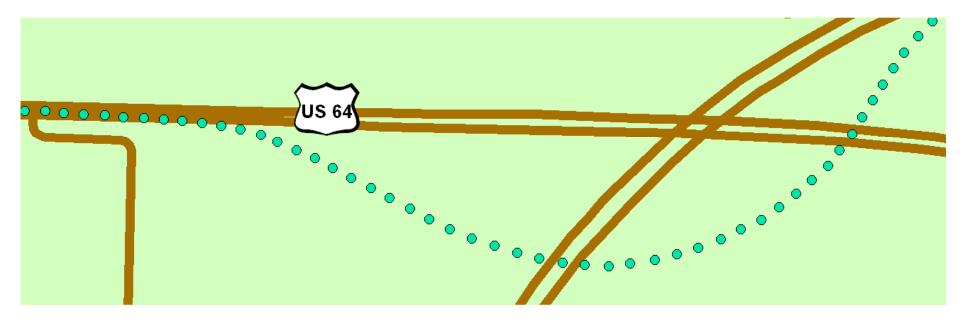

Map Matching Cases

- Selection of candidate road segments based on spatial relationship
 - Shortest distance

Map Matching Cases (Cont'd)


- Shortest distance
- Agreement among GPS heading to direction of roads

Map Matching Cases (Cont'd)


Connectivity of map matching results

Map Matching Cases (Cont'd)

Map resolution

Choices of Map Matching Parameters

- Distance between GPS and road segments
- Agreement among GPS heading and road directions
- Connectivity of map matching results
- Accurate map data

Implementation - Software

GUI-based GIS software

- Graphical user interface
- Lack of flexibility to implement user-developed algorithms
- Lack of capability to handle large amount of GPS data

- Database application
- PostgreSQL
 - Database management systems
- PostGIS
 - Library of spatial database functions
- Simple scripting languages for constructing spatial queries
 - ST_Distance

Abilities to

- implement user-developed algorithms
- handle large-scale data

manage map matching processes

file_id	process_status	worker	file_process_date
8742624	2	LTSWU	2012-07-06
2121693	2	AWSMCLAUGHLIN	2011-12-29
3682956	0	AWSMCLAUGHLIN	2011-12-29
18723460	2	DT129CASR04	2012-07-06
3655875	2	TMVTTI003	2011-12-29
11442562	1	DT129CASR04	2012-07-06

Abilities to

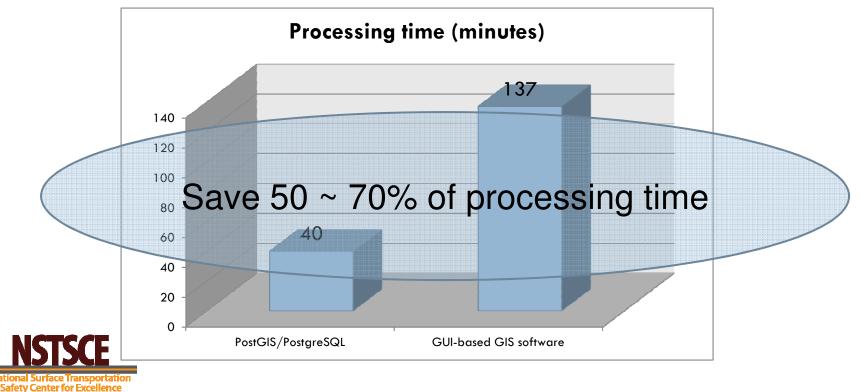
implement user-developed algorithms

NDS data

handle large-scale data

manage map matching processes

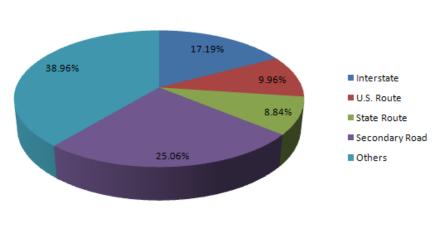
file_id	timestamp	latitude	longitude	speed_mph	distance_feet	heading_gps	road_objectid	road_mapused	write_time
1 1892139	50975	42.	-77.9	2.76163210	109.25403009	268.790008544922	0042	DOT	2012-03-30 15:30:26
2 1892139	72976	42.	-77.	11.92104522	44.96416183	274.970001220703	0042	DOT	2012-03-30 15:30:26
3 1892139	74976	42.	-77.9	15.64924855	44.79189702	268.059997558594	0042	DOT	2012-03-30 15:30:26
4 1892139	76976	42.	-77.	19.80320377	57.07578619	269.730010986328	0042	DOT	2012-03-30 15:30:26
5 1892139	78976	42.	-77.	19.86073697	57.00786179	271.899993896484	0042	DOT	2012-03-30 15:30:26
6 1892139	79976	42.	-77.	19.61909496	32.84241468	271.209991455078	0042	DOT	2012-03-30 15:30:26
7 1892139	81976	42.	-77.9	19.41197202	61.09569528	268.649993896484	0042	DOT	2012-03-30 15:30:26
8 1892139	83976	42.	-77.8	21.57525156	59.30572639	260.140014648438	0042	DOT	2012-03-30 15:30:26


Roadway data

Less processing time

Number of GPS points: 1,153,728

Number of road segments: 374,493 (NY)



Contact: swu@vtti.vt.edu

Questions?

Percent of Mileage on Each Road Class

References

- Shih-Ching Wu, Shane McLaughlin (2012) "Creating a Heatmap Visualization of 150 Million GPS Points on Roadway Maps via SAS", 20th Annual Southeast SAS Users Group Conference, Oct. 14-16, 2012
- Shih-Ching Wu, Shane McLaughlin (2012) "Tips for Using SAS to Manipulate Large-scale Data in Databases", 25th Annual Northeast SAS Users Group Conference, Nov. 11-14, 2012
- Yu Zheng, Xiaofang Zhou (2011) "Computing with Spatial Trajectories", 1st Edition, Springer

References (Cont'd)

- Strategic Highway Research Program 2
 <u>http://www.shrp2nds.us/</u>
- PostgreSQL
 - <u>http://www.postgresql.org/</u>
- PostGIS
 - <u>http://postgis.refractions.net</u>

