NSTSCE

National Surface Transportation Safety Center for Excellence

Instrumentation for Assessing Lighting in Naturalistic Driving

Lighting Data

- Two Magnitudes of Detail
 - Simple Glare Assessment
 - Evaluation of Light entering the Driver's Eye
 - Vertical illuminance detector
 - Scene Assessment
 - Provide an image of the entire visual scene
 - Luminance (Brightness) assessment through an optical system

First Level – Glare Assessment

- Glare is typically assessed by evaluating the vertical illuminance on the drivers eye
 - Amount of light falling on a Vertical plane at the eye
- Disability Glare

$$L_{SEQ} = \frac{k \cdot E_{gl}}{\theta^n}$$

Discomfort Glare $W = 5.0 - 2.0LOG_{10} \frac{E \max}{0.003 * \left(1 + \sqrt{\frac{La}{0.04}}\right) * \theta_{\max}^{0.46}}$

First Level Measurement

- A small light sensor and a vertical capture plane can be linked with glare
 - Limited No source Discrimination
 - Overhead lighting
 - Sun
 - Vehicle headlamps
- A video based spatial system can be used for more accurate assessment

Luminance Camera

- The Luminance Camera project was the development of a system which allows for the capture of live luminance data from a moving vehicle.
 - For use in a naturalistic suite of instruments to capture roadway luminance from a driver in crash scenarios

CCD Photometry

- "This is not your Parent's photometry"
- We have barely started to scratch the surface of how this instrument will change the way we look at lighting

Luminance Camera

12 bit Point Grey Digital Firewire camera.

- Calibrated against a Prometric Still Luminance Camera
- Varying shutter and gain values determine the range of luminance measured
 - 2 cameras can be coupled to increase dynamic response
- Individual images are stored for later analysis

Luminance Camera

Luminance Camera Calibration Procedure

- In controlled environment, with adjustable lighting levels:
 - Take simultaneous, "identical", pictures with:
 - Radiant Imaging ProMetric Photometer results in luminance (cd/m²)
 - CCD Camera results in grayvalues
 - Vary CCD attributes
 - gain, shutter, autoexposure, sharpness, and brightness during image acquisition
 - Use MATLAB software to automatically extract pixel values from over 800 images

Calibration - Procedure

- Controlled environment
- Simultaneous image capture with ProMetric photometer and Luminance Cameras
 - Software automatically adjusts Luminance Camera variables

Light Level (cd/m2)	24.1, 15.6, 7.99, 1.87
Camera Gain (dB)	24, 21, 18, 15, 12, 9, 6, 3, 0, -2.25
Camera Shutter (ms)	267, 213, 159, 105, 51, 41, 36, 31, 26, 21, 16, 11, 6, 1

Calibration - Procedure

Overlay of images completed automatically through software

Calibration - Results

Pixel analysis

Positive relationship of Luminance Camera gray value and gain

National Surface Transportation Safety Center for Excellence

Dynamic Evaluation – Procedure Camera Setting Selection

Estimation of maximum luminance

Dynamic Evaluation - Results

Manual

Automatic

High presence of blurring and

saturation with auto configuration

Luminance Camera Performance

- 16 bit image
 - 1 to 55000 ratio of luminance within image
- Camera capture
 - 7.5 frames/second
 - 1024x768 resolution
 - At 40 mph → 1 frame every 7.8ft
 - 3.75 frames/second
 - 1280x960 resolution
 - At 40 mph → 1 frame every 15.64ft
 - For a 2 hour Video
 - 44 GB of data

Rural Intersection Lighting – Luminance Data Reduction

- Semi-automated process in MATLAB
 - Roadway area selected by user
 - Luminance data extracted for image + following images in sequence

Contrast Assessment

Color Camera Measurement System

- New High performing color cameras are now available.
 - USB 3.0 rather than FireWire
- Working on the calibration of a color camera for use in the instrumentation

Color Camera Measurement System

Calibration

- Color impressions change with the light source
 - LED versus HPS versus Incandescent
- Similar calibration procedures as with the luminance camera but varying light source for validation

Links with Eye Glance Data

- Through the instrumentation and the eye glance data, we are able to assess:
 - Adaptation
 - Visual Behavior

Highway – Right Curve

Luminance Camera Results

- The data collection method developed using the two camera system shows an adequate level of certainty in for both high and low ranges of the lighted environment.
 - Color Cameras are being assessed
- The camera has been integrated into the VTTI instrumentation system using an additional laptop and an Ethernet Link
 - Tighter integration is being worked on.

