

Metrics for Identifying Fatigued Driving

Research Professor Mikael Sallinen

29.10.2012 Mikael Sallinen 1 © Finnish Institute of Occupational Health – www.ttl.fi

Physiologic metrics

Method	Metric	Reference standard
EEG	 alpha, theta & beta power density^{1,2,3, 4,5,6,7} alpha spindle parameters³ 	 response to fatigue- inducing factors while driving self-rated sleepiness lane drifting
EOG	 slow eye movements^{1,5,7} blink duration, amplitude, density^{2,5,7,8} lid closing and opening velocity^{5,8} saccadic & fixation parameters⁸ 	 response to fatigue- provoking factors while driving self-rated sleepiness

¹Mitler et al. N J Engl Med 1997, 337, 755-61. ²Sandberg et al. 2011, 34, 1317-25.
 ³Simon et al. Clin Neurophysiol 2011, 122, 1168-78. ⁴Kecklund & Åkerstedt. Ergonomics 1993, 1007-17.
 ⁵Åkerstedt et al. J Sleep Res 2010, 19, 298-309. ⁶Wei et al. Neurosci Letters 2012, 506, 235-39.
 ⁷Anund et al. Acc Anal Prev 2008, 40, 1970-76. ⁸Schleicher at al. Ergonomics, 2008, 982-1010.

Behavioral metrics

Method	Metric	Reference standard
Task- based	 - PVT: lapses, response speed¹ 	 response to fatigue- inducing factors
methods	- Posturography: balance scores ²	
Video- based methods	- Perclos : the proportion of time	- "near crashes"
	eyes are 80–100% closed ^{3,4,5}	 self-rated sleepiness
	- ORD: eye closures, facial tone, behavior, mannerisms ^{3,4}	- lane drifting
Vehicle &	- lane variability ^{6,7,8,9,10,11}	- self-rated sleepiness
<u>steering</u> <u>wheel –</u> <u>based</u> <u>methods</u>	- steering variablity ^{6,7,8}	 vigilance performance response to fatigue-
		inducing factors while driving

¹Baulk et al. Accid Anal Prev 2008, 40, 396-402. ²Forsman et al.J Sleep Res 2007, 16, 259–61. ³Hanowski et al. Accid Anal Prev 2003, 35, 153–60. ⁴Dingus et al. Accid Anal Prev 2006, 38, 1127-36. ⁵ Sommer & Golz Conf Proc IEEE Eng Med Biol Soc 2010, 4456-9. ⁶Friedricsh & Young EUSIPCO-2010, 2010, 209-13. ⁷Berglund Master's Thesis, 2007. ⁸ Mattson Master's Thesis 2007. ⁹Sandberg et al. IEEE Trasaction on Intelligent Transportation 2011, 12, 97-108. ¹⁰ Forsman et al. Accid Anal Prev (in press). ¹¹Soccolich et al. Accid Anal Prev (in press).

Vehicle/steering wheel-based metrics

Study	Driving conditions	N of metrics tested	Ref. standard	Most sensitive metric
Friedrics ¹ (2010)	Real roads	31	Subj. fatigue (KSS)	Average <i>steering</i> angular velocity
Berglund ² (2007) & Mattson ³ (2007)	Simulator	17	Subj. fatigue (KSS)	Combination of <i>steering wheel</i> direction reversals, <i>vehicle</i> path deviations, and sd of lateral position
Forsman ⁴ (in press)	Simulator	87	Beh. & subj. fatigue (PVT, KSS)	Combination of <i>lane variability</i> metrics (e.g., sd of lateral lane position)

¹Friedricsh & Young EUSIPCO-2010, 2010, 209-13.

²Berglund Master's Thesis, 2007.

³Mattson Master's Thesis 2007.

⁴Forsman et al. Accid Anal Prev (in press).

Subjective sleepiness and driving

Subjective sleepiness (KSS)	Driving errors
1 extremely alert	
2 very alert	
3 alert	
4 rather alert	
5 neither alert nor sleepy	
6 some signs of sleepiness	minor lane drifting markedly increases ^{1,2}
7 sleepy, no effort to stay awake	
8 sleepy, some effort to stay awake	major lane drifting (lane departures)
9 very sleepy, great effort to keep	markedly increases 1,3,4
awake, fighting sleep	
1	

¹ Reyner & Horne, Int J Legal Med, 1998, 111, 120–23
 ² Sagaspe et al., PloS ONE, 2008, 3, e3493.
 ³ Anund et al., Acid Anal Prev, 2008, 15, 1970-6
 ⁴Ingre et al. J Sleep Res, 2006, 15, 142-8

How can you choose the right metric(s)?

- 1) For the moment, there is *no* "*silver bullet*" to measure driver fatigue. Therefore, it is recommended using *multiple methods/metrics.*
- The easiest way is to rely on *introspection (subjective metrics)*. It is a quite valid/reliable and inexpensive method but sensitive to manipulation.
- 3) *Vehicle/steering wheel and eye closure metrics* are also among the first choices. They are unobtrusive and objective by nature.
- Physiologic metrics are objective by nature but often obtrusive (electrodes) and expensive (analyses). However, they will become more feasible to use in the future along with the development of technology.

Truck driver sleepiness – an ongoing project at FIOH

1. How sleepy are long-haul truck drivers at the wheel?

2. Is it possible to improve their alertness through training?

Proportion of "sleepy" shifts

Fig. 1. The proportion of shifts during which the drivers rated their sleepiness ≥ 6 , ≥ 7 or ≥ 8 on the Karoliska Sleepiness Scale at least once. A total of 130 morning shifts, 38 day shifts, 85 evening shifts, and 222 night shifts have been included in the analysis.

Does fatigue management training reduce fatigue?

Fig. 2. % of "sleepy" shifts (KSS≥6 at least once) in the intervention and control groups.

42.5%

+ 47.5%

+ 50.0%

8 9 10

1 44.8%

3

4

5

6

7

2

Night shift (n=80)

Night shift (n=68)

Evening shift (n=40)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1

5

Evening shift (n=29)

