Using NDS Data to Evaluate Senior Driver Behavior at Intersections

Third International Symposium on Naturalistic Driving Research August 27 — 30, 2012 Blacksburg, Virginia

Using NDS Data to Evaluate Senior Driver Behavior at Intersections

2

Sponsors of Work Reported

- National Surface Transportation Safety Center for Excellence (NSTSCE)
- Toyota Technical Center
- National Institutes of Health

Overview of NDS at VTTI

Overview

- Study I Investigate the relative risk of purportedly high demand driving situations for older drivers using naturalistic driving data
- Study II Based on results of Study I, compare lateral head rotations of middleaged and older drivers at intersections using naturalistic driving data

Which driving situations impose high demand on older drivers?

intersections navigation -•merging inclement weather night driving nomadic device use •various roadway and environ. factors

8/28/2012

Senior Naturalistic Driving Study Overview

- 20 Primary Drivers
 - 11 male, 9 female
 - 71-84 years of age
- One year per participant
- Continuous data collection
- 4 camera views
- Multiple sensors (accelerometers, GPS, radar, vehicle network)
- □ Total Trip Data Files: 29,172
- □ Total Data Hours: ≈ 4,639

Crash / Near-Crash Analysis

Older Driver High Demand Situations

Intersections

•Merging

Table 6. Odds Ratios for High Demand Driving Situations for Elderly Drivers					
High Driving Demand Factor for Older					
Drivers	Point Estimate	Lower Cl	Upper Cl		
Intersections	4.18	2.65	6.61		
Merging	2.51	1.15	5.47		

T	Table 7. Odds Ratios for High Demand Driving Situations for Elderly Drivers (at fault crashes only)					
	High Driving Demand Factor for Older					
	Drivers	Point Estimate	Lower Cl	Upper Cl		
	Intersections	3.42	2.00	5.83		
	Merging	2.53	1.04	6.13		

Study II – Range of Head Rotation at Intersections

Safety Center for Excellence

- Literature review & Study I showed / confirmed intersections represent one of the most difficult and risky driving scenario for older drivers
- Studies have shown narrower glance patterns for older drivers in certain driving situations
- Goal Investigate lateral head rotation behaviors for intersection crossings for older and middle-aged drivers
- Follow-on to pilot study by Angell, Antin, Wotring, and STSCE Aich (2010)

Key Results

Range of Lateral Head Rotation (Yaw)

Counterintuitive Result? Compensation?

Further Studies of Age-Related Intersection Behavior

Sudipto Aich and Linda Angell VTTI

How do drivers regulate their visual glances while making unprotected turns?

Visual Entropy

Using Visual Glance Reduction for each location, probability (Pi) of each location is computed

Entropy = H = $\sum P_i log_2(1/P_i)$, Source: Shannon, 1948

Where:

- P = Probability of glance to a particular location
- i = a particular location

Analysis: Significant Differences

8/28/2012

Analysis: Significant Differences

Analysis: Not Significant Differences

ational Surface Transportation Safety Center for Excellence 8/28/2012

Glance Distribution by Location

Glance Distribution by Location: L Window + R Window

Glance Distribution by Location

Counterintuitive Result? Compensation?

International Comparison: U.S. and Australia

Jude Charlton and her colleagues conducted a naturalistic study of distracted driving behavior of Australian seniors at intersections

- She and I decided it would be interesting to attempt to perform the same reductions and analyses on naturalistic driving data collected with U.S. seniors and compare the results.
- More difficult than originally imagined

International Comparison: U.S. and Australia

22

Similar language and culture, but there are important differences...

