Thin Surfacings

by

Manfred N. Partl

Ass. Prof. KTH Stockholm, Adj. Prof. Carleton, Ottawa, CA

EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory Road Engineering/Sealing Components, www.empa.ch/Abt113

Surfa-

cing

Base

ca. <40mm

Wearing C.

Binder C.

Subbase

Base C.

Thin Asphalt Surfacings: General

Functional Characteristics of Thin Layer Surfacings:

- Surface Properties most important.
 - Traffic Safety (skid resistance/friction, drainage, splash & spray, optical prop...)
 - Protection of Lower Layers
 (H₂O & temperature, mech. wear, snow plough, chemicals,...)
 - Environmental-Functions (noise reduction,...)
- No Bearing Capacity but Load Transfer & Crack-Bridging Function
 - Horiz. Shear (driving, breaking; slopes, curves, ...) → interlayer bond & aggregate bond
 - Horiz. Tension & Compression (thermal dilatation, local tension from tire-rubber contact,...) → aggregate bond

Material Requirements

- **Binder:** as soft as possible (rutting!); good bonding (H_2O); aging & temp. resistant \rightarrow PmB
- Aggregates: resistant to crushing, polishing & frost; good micro- roughness

Thin Surfacings: State of the Art & Practice

(remark: no surface treatments & no pre-fab)

Status Europe:

- Mostly hot mix thin asphalt layer surfacings
- In place fabrication
- Tack/Bond Coat: Cationic & polymer modified emulsions

Tendency to fine aggregate sizes (noise)

European Standards EN:

- EN 13108-1 AC Asphalt Concrete
- EN 13108-1 AC MR Asphalt Concrete "Macro Rough"
- EN 13108-2 BBTM (ACVTL)
 Asphalt Concrete for Very Thin Layers
- EN 13108-3 SA A,B,C,S Soft Asphalt
- EN 13108-4 HRA Hot Rolled Asphalt
- EN 13108-5 SMA Stone Mastic Asphalt
- EN 13108-6 MA Mastic Asphalt
- EN 13108-7 PA Porous Asphalt

Hot Mix Surfacings, e.g. CH-Type H

Туре	Thickn	Filler	Sand	BinderType (standard)	Binder	Voids	EN
	[mm]	<63µm	<2mm		Dosage	in Pav	
		[M%]	[M%]		[M%]	[V%]	
AC 8	2535	612	3861	50/70; PmB50/70-53C	≥5.8	2.56	13108-1
AC 11	3550	512	3153		≥5.4	2.56	
AC MR 8	2030	611	2131	PmB50/70-53C; PmB50/70-65E;	≥5.7	38	
AC MR 11	2540	59	1626	PmB70/100-60E	≥5.6		
BBTM 8	1525	79	2535	PmB50/70-53C; PmB70/100-48C	≥6.0		13108-2
BBTM 11	2030	1012		PmB50/70-65E; PmB70/100-60E;	≥5.6		
SMA 8	25 35	712	2030	50/70; 70/100; PmB30/50-65E;	≥6.4	25	1310 8-5
SMA11	3045			PmB50/70-65E; PmB70/100-60E	≥6.2		
PA 8	2535	35	1017	PmB50/70-65E; PmB70/100-60E;	≥5.0	2127	13108-7
PA 11	3550		815		≥4.5		
MA 11	3045	1931	4055	35/50;PmB30/50-65E	≥6.8	-	13108-6
MA 16	4055	2028	3550		≥6.5		

Possible Contribution of Thin Surfacings to more Sustainable Solutions

Save Material Ressources

- Use of durable & 100% recyclable material components
- Protection of lower layers (water, temp. isolation)

Save Energy:

- Low temperature pavement layer
- Bright surfaces (lighting)*: colorless binder, white chipping (e.g. rousil);
 fluorescent/reflective components
- Self-deicing* & self cleaning

Reduce Environmental Pollution

- Noise (texture, rubber..)
- Water cleaning (filtering) & retention/drainage & splash/spray*
- Low abrasion* & dust prevention
- Active (solar) energy harvesting
- Urban heat island
- Air cleaning (photocatalytic NO_x TiO₂)

Current Gaps of Knowledge

- Modeling, characterization & measurement of long term lab & in situ...
 - Surface properties/performance
 - Friction texture including noise etc. (what measurement simulates reality best?)
 - Abrasion & ravelling (Wehner Schultze?)
 - Material properties/performance
 - Interlayer bond (moisture, temp, interface texture; blistering, crack-bridging..)
 - Aggregate bond (moisture, temp, surface prop., binder adhesivity; stripping, surface cracking)
 - Binder or mastic cohesivity (aging, damage & desintegration, deformability)
 - Tack/bond & sealing coats (are they necessary?)

Further General Gaps

- Inhomogeneity, scaling & size effects
- Effect of combined traffic & weather histories (incl. accelerated simulation?)

Special Innovation paths

- Recycling/Re-use (how much, re-usable material, substitute materials?)
- Low-temp solutions (emulsion, foam bitumen, waxes, ...)?
- Outside of the Box
 - All-weather construction robustness (rain, cold);
 - O-Maintenance (self-healing, self-repair...)
 - Reinforcement (fibers, grids,..)
 - Multifunctionality (extra value? → smart pavements, self-deicing,...)

Materials Science & Technolog

Main Research Questions

Basic understanding/framework:

How to model, characterize, measure and compare long term lab & in situ surface and material properties/performance?

Material developments:

- How to increase durability of thin hot mix asphalt surfacings in terms of surface and material properties, including interlayer bond?
- How can high performance thin surfacings be designed with minimum amount of energy consumption and maximum content of recycling/re-use materials (not as linear landfill but for improving properties)?
- How to obtain all-weather construction robustness with simple & fast construction techniques (minimize congestion, minimize transportion distances)?
- Is it possible to develop thin smart, adaptable surfacings with zeromaintenance and self-healing/repair properties?
- How improve multifunctionality, additional value of pavement surfaces?
 - →Noise (texture, rubber..) water cleaning (filtering) & retention/drainage & splash/spray active (solar) energy harvesting reduce urban heat island bright surfaces (colorless binder, white chipping, fluorescent/reflective components)
 - air cleaning (photocatalytic NO_X TiO₂) isolation/protection

Chair: M. N. Partl; Secr: G. Tebaldi http://www.ape-isap-tc.unipr.it/

Shoreham Hotel - Forum Room

- APE WG 1 RAP Recycling (C. de La Roche)- resigned- open ?)
- APE WG 3 Life cycle analysis J. Harvey
- APE WG 4 New technologies and special environment aspects on asphalt pavements – Gordon Airey

New Work groups: goals, activities and working plan

- WG on Cold Recycling, proposed chairman: K. Jenkins
- WG on By-products recycling in asphalt pavements, proposed chairman: G. Huber
- WG on Secondary materials recycling in asphalt pavements, proposed chairman: open ?

