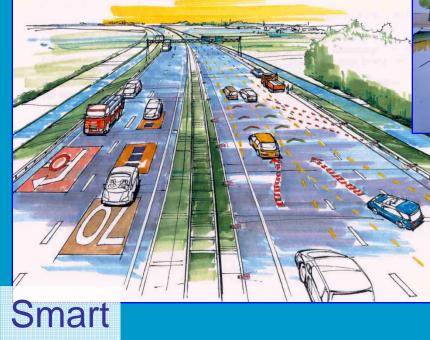
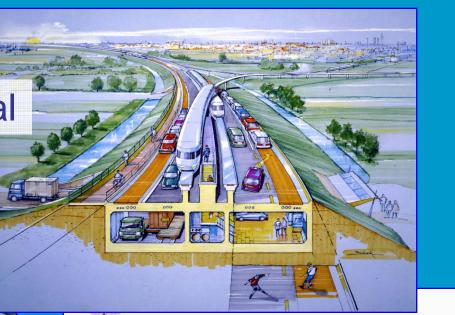
Pavement Systems

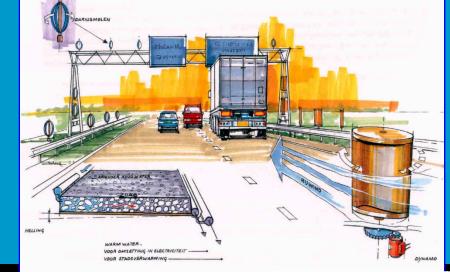
Martin van de Ven Delft University of Technology the Netherlands

February 12, 2010

Delft University of Technology

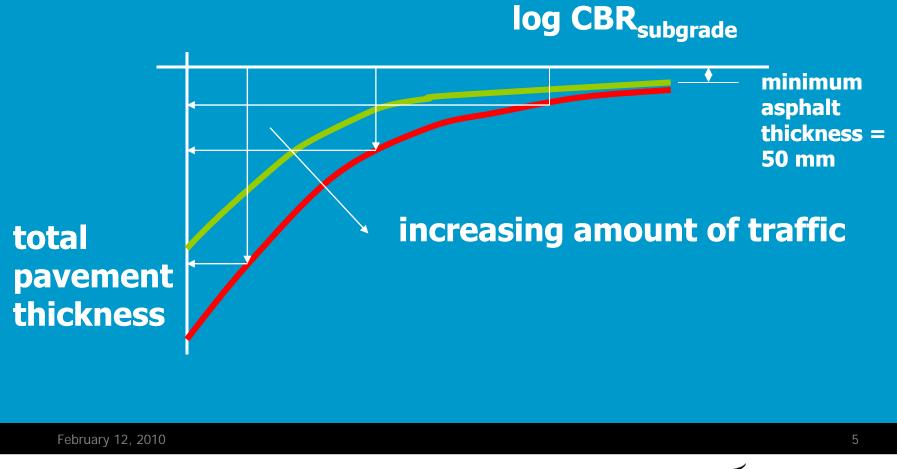

contents


• Intro


- Sustainable pavement system
- Variability
- Environment
- Energy (rolling resistance)
- Noise
- Emission/pollution

Long term thinking Multifunctional

February 12, 2010


Energy low **TU**Delft

Pavement structure design: traditional approach

- Select thickness of covering layers such that stresses in subgrade are reduced to such an extent that subgrade deformations are limited.
- Select materials for covering layers such that no excessive deformation takes place there.
- Designs were based on limiting shear stresses in unbound layers.
- Thin surfacings were used to provide smoothness for driving comfort.

Empirical design charts allowed to determine thickness and CBR of granular base and thickness asphalt layer given CBR_{subgrade}

Modern flexible pavement structures are much thicker and quite diverse ...

South Africa

5 cm asphalt concrete (4%)

15 cm high quality crushed stone

25 cm cement treated subbase

the Netherlands

5 cm porous asphalt concrete (>20%)

20 cm aspahlt concrete (6%)

30 cm unbound base of recycled material

CBR ≥ **15%**

CBR ≈ **10%**

February 12, 2010


Pavement Systems in use strongly related to country/local situation: example the Netherlands

paved area consists for 30% - 35% of small element pavements
within built-up areas share of small element pavements is even much larger (≈ 55%)

February 12, 2010

Pavement systems in the Netherlands

February 12, 2010

Manual paving: typical Dutch

February 12, 2010

Durable and Sustainable Pavement systems

Pavement systems that provide the highest service to the road user with the lowest possible environmental impact.

February 12, 2010

Highest Service to the Road User (definition as used in the Netherlands)

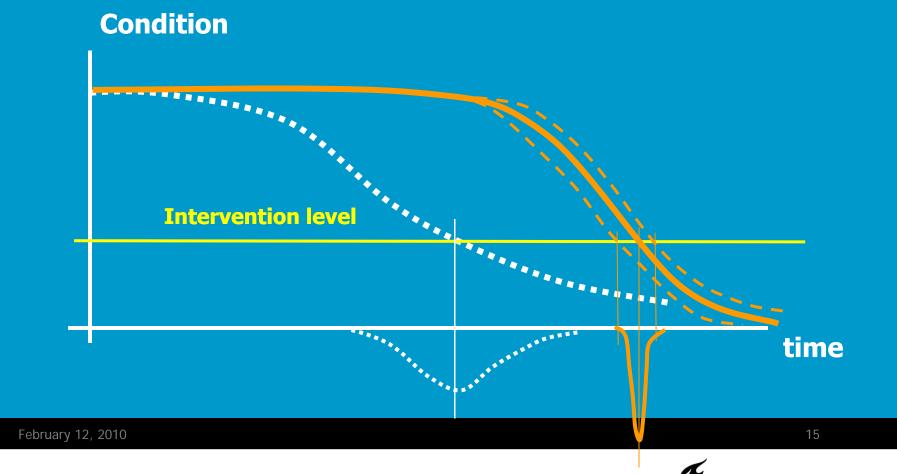
- Lowest hinder to traffic during construction.
- Lowest hinder to traffic during exploitation.

Lowest Environmental Impact

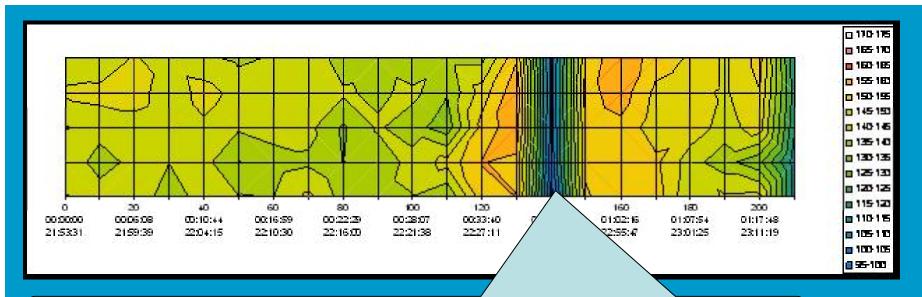
- Noise, fumes, fine dust, energy.
- Life Cycle Analysis is required.
- Not only the environmental impact of e.g. the production of asphalt should be considered but also the impact of the production of aggregates, modifiers etc should be taken into account.

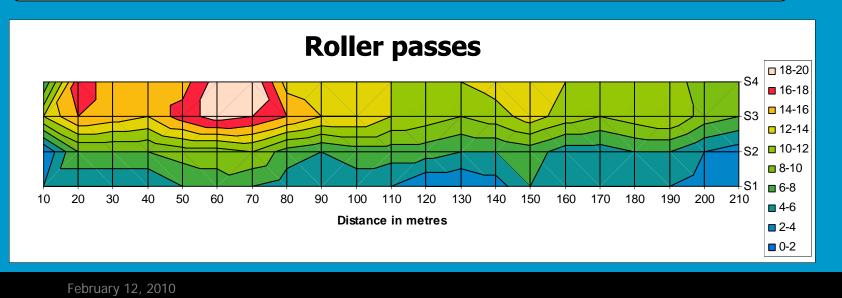
Sustainable Pavement systems

- What do we require from our road network.
- Overview of pollution (noise, fumes) and energy demands related to pavement systems and construction.
- Options to reduce pollution and energy needs.
- Topics for today and the future.


Requirements of Road Networks

- Maximize availability of network.
- Maximize reliability of network in terms of:
 - travel times
 - comfort
 - safety
- Maximize performance predictability of network.
 - increase average quality resulting in longer average pavement life,
 - reduce variability in quality.


February 12, 2010

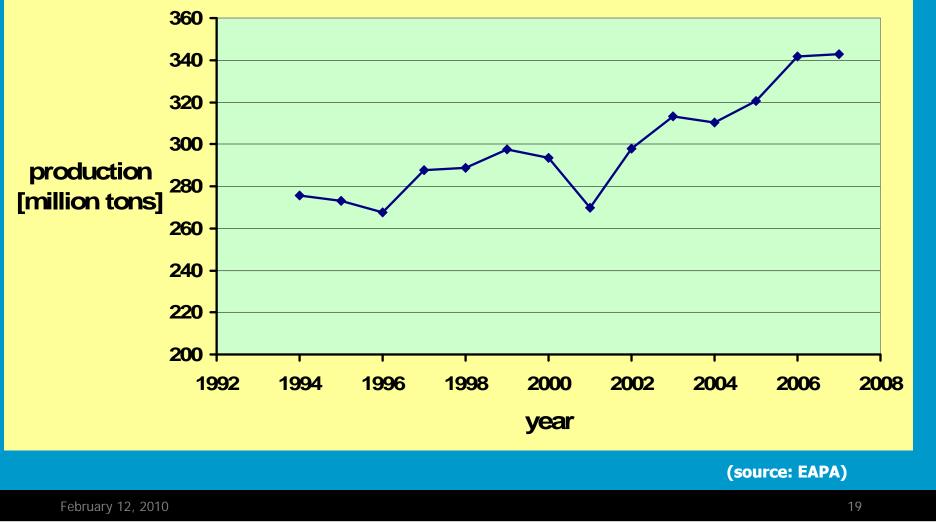

Longer average lifetime and less variation reduces traffic hinder

Cooling of the asphalt when the paver has stopped

Source: S.R. Miller, Twente University

Quick win (example asphalt pavements)

- Do a better job in producing and laying mixtures ! High and homogeneous quality is required !
- Important factors to control are a.o.:
 - workmanship
 - segregation
 - temperature
 - compaction
- Improve existing equipment.
- Computer controlled systems are a must.



Pavement System (example Asphalt) and Environment

- How much do we produce.
- Main producing countries.
- Status with respect to recycling.
- Low energy asphalt.

Asphalt Mix Production in Europe

Production of Asphalt Concrete in Europe (29 countries)

• Total 2007: 342,9 tonnes

France	42,3	Poland	18,0
Germany	51	Spain	49,9
UK	25,7	Netherlands	10,2
Italy	35,1	Turkey	22,2

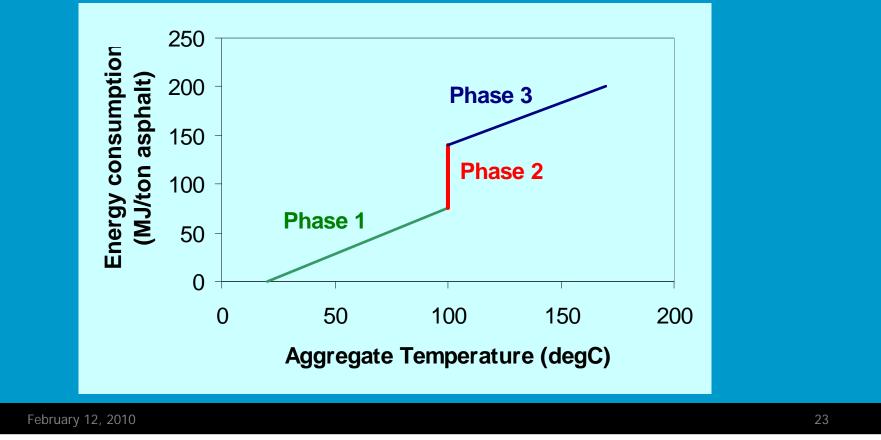
(source: EAPA)

February 12, 2010

Re-use of asphalt mixtures in Europe

Country	Available reclaimed asphalt mix	% re-used in hot mix	% re-used in cold mix	% of new hot mix production
Germany	14 * 10 ⁶	82	18	60
Spain	2.25 * 10 ⁶	8	4	3.5
Italy	14 * 10 ⁶	18	2	
France	6.5 * 10 ⁶	13	< 2	< 10
Norway	0.59 * 10 ⁶	7	26	8
Netherlands	3 * 10 ⁶	75		63

February 12, 2010



Quick win? (unless..)

- Re-use of old asphalt is a well developed technique; it is widely applied in a number of countries.
- Re-use of old asphalt is not yet a general applied technique.
- Re-use and recycling need firm support and should be enforced by legislation.

Asphalt: reducing Production Temperatures reduces Energy Needs and emissions

Production of Aggregates in Europe (18 countries)

- 2800 million tonnes per year (≈ 50% crushed rock, ≈ 5% recycled aggregate, ≈ 45% gravel and sand)
- 2700 sites
- a road uses 30 000 tonnes per km

Germany	526	UK	257
Spain	438	Poland	148
France	402	Finland	98
Italy	358	Austria	95

(source: European Aggregate Association)

February 12, 2010

Aggregates in pavement system

- Re-use and recycling of e.g. concrete and masonry rubble is at embarrassing low level.
- Some countries are really front runners; in the Netherlands 90% of the concrete/masonry rubble is recycled as base course for roads.
- Much can be gained.

Energy consumed in procuring materials and in			
executing primary construction activities			
Material procurement /	Unit	Energy	
Construction activity	UIIIt	consumed (Mj)	
Material procurement			
Graded crushed stone (GCS)	Mj / t	50	
HMA manufacture	Mj / t	30	
Cement	Mj / t	70	
Bitumen	Mj / t	60	
Material haulage	Mj / t km	1	
Construction activity			
Milling ¹	Mj / t	5	
In situ recycling / stabilising	Mj / t	10	
Processing aggregate layer	Mj / t	66	
Ditto per m ² for 150mm thick layer	Mj / m^2	10	
Compacting and finishing layer ²	Mj / m²	10	
^{eb} HMA paving and compaction	Mj / t	20	26

Energy Consumption in EU-27 (2007)

Industry	Households	Agriculture	Transport	Services	Other Sectors
28%	25%	2%	33%	11%	1%

Energy Consumption of a Pavement System (Ecoles des Mines 2002)

- 1 km 2 x 2 lane road
- 30 years lifespan
- traffic class 6
- 25 million heavy goods vehicles
- 100 million private cars
- total energy consumption 1430 TJ
- 2% is used for construction and maintenance

(source: EAPA)

Contribution pavement system

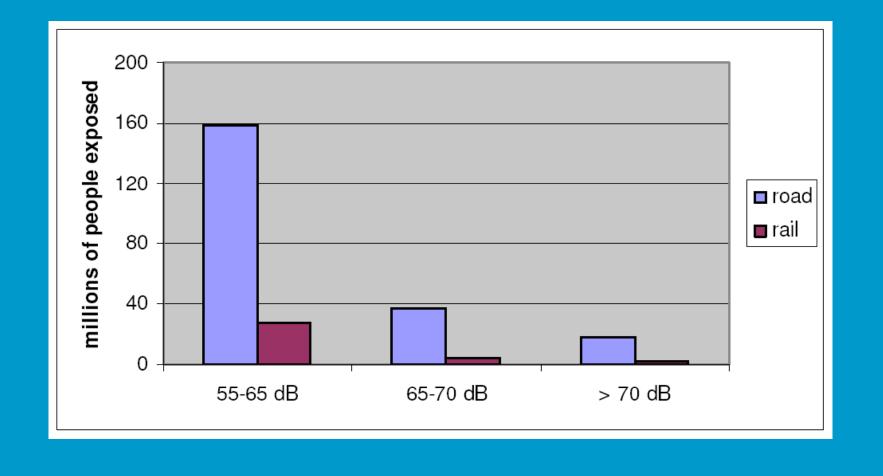
- Although very important (cold in place recycling), savings which can be realized by construction of pavement systems are limited.
- Main savings can be obtained by reducing energy needs of trucks and cars.
- What could be contribution of Pavement system?

Road Surface and Fuel Consumption (Volvo V70)

Road surface type	Fuel consumption relative to Dense Asphalt Concrete 0/16 [%]
Dense Asphalt Concrete 0/16	0
Porous Asphalt 6/16	- 0.0 (± 3.5)
Stone Mastic Asphalt 0/6	+ 3.4 (± 3.6)
Double-layered Porous Asphalt 4/8 + 11/16*	+ 1.2 (± 3.3)
Cement Concrete, broomed transversely	+ 0.4 (± 3.4)
Cement Concrete treated with a surface epoxy durop	+ 2.7 (± 4.5)
Brick-layered pavement	+ 5.3 (± 6.6)
* New road surface; bitumen film still present	

Pavement systems: rolling resistance

- Much more work should be done in the development of rolling resistance reducing wearing courses.
- It looks like some noise reducing surface layers are not really reducing rolling resistance!



Noise in Europe (2000 data)

- More than 44% of the EU-25 population (210 million) is regularly exposed to noise levels higher than 55 dB(A).
- 25 million are seriously annoyed.

Noise in Europe (2000 data)

February 12, 2010

Pavement system and noise

- Noise reducing pavement Systems are important.
- Noise reducing layers not always possible because of harsh climatic (winter) conditions (snow removal, salt, low temperatures).
- Durable (long life) solutions are needed.
- Also rolling resistance as well as skid resistance are of importance.
- Holistic approach is needed. Silent surface silent tire durable wearing course with low rolling resistance – skid resistance.

Air Pollution and Emissions in the Netherlands

- NMVOC = volatile organic compounds excluding methane; smog generating, sometimes carcinogenic
- SO₂ = causing acidification
- NO_x = causing acidification and smog
- NH₃ = causing acidification
- PM10 = particle matter smaller than 10 μm ; penetrates deeply into lungs; detrimental to health

Pavement systems and air polution/emissions

- Traffic is major contributor to air pollution.
- Contribution of the building materials industry seems limited.
- Contribution of Pavement systems in reducing pollution?
 - smooth roads to reduce fuel consumption,
 - catching PM10,
 - catching NO_x.

Sustainable and Durable Pavement Systems

- Improved production and construction techniques including improved workmanship (e.g. through computerization).
- Long life wearing courses produced at low energy and emission levels.
- Silent and durable wearing courses with low rolling resistance.
- Increased re-use of RAP and recycling of building materials in general.
- Further development of emission controlling systems.

February 12, 2010

Green Purchasing Policy Dutch RWS as per 2010

- LCA is the most recognized and scientific method to measure environmental performance
- With a reduced impact for design and construction based on LCA, the bid will get a higher rating
- LCA needs to conform to NEN 8006
- 2 models are accepted as tools for proof to meet this requirement

Change?

• Yes we can

February 12, 2010

Road Surface of the Future

