Tomorrow's Flexible Pavement Bio-Binder

Gayle King

International Sustainable Pavements Workshop

January 7-9, 2010

Mission Statement:

Create a flexible pavement binder which:

- is derived from sustainable renewable resources
- enables the paving industry to achieve a negative carbon footprint (net reduction of atmospheric CO₂)
- yields safe and economical high-performance pavements under all traffic and climatic conditions.
- can be constructed, maintained, and recycled with minimal disruptions to traffic.
- enables all existing environmental health and safety standards to be met and exceeded.

Define sustainable?

Annual asphalt use worldwide

Approximately 100 million tons

Annual worldwide production of lipid grain

Oils (Soy, Palm, Rape, Sunflower – not Corn Oil)

- Approximately 100 million tons
- Paving Products: Ecopave, Activate, Replay, ...

Find new land with fresh water

- South American rain forests
- Rain forests on Pete (release CH₄) High CO_{2e}
- United Nations report defines issues for fuels

Grain oil as a raw material is not sustainable!

Guiding Principles for Research: Sustainable Sources of Raw Materials

- Biomass sources which preferably do not use land or fresh water resources now producing food.
 - Cellulosic biomass
 - Algae
 - Other fast growing biological species

Prefer direct sourcing of raw materials rather than using by-products from other fuels technologies (e.g. lignin, pyrolysis pitch).

Guiding Principles for Research Competitive life-cycle costs

Assumptions:

- Petroleum reserves will decrease and refinery coking capacity will increase
 - reduced AC supply
 - gradually increasing AC prices
- Synthetic binders will add value
 - Reduced damage from moisture and oxidation
 - Stronger, thinner, more flexible pavements

Cap & Trade policy will provide economic incentive through carbon credits

Guiding Principles for Research Targeted Products

Flexible Paving Binder

Replace asphalt as the primary paving material.

Asphalt Extender

Extend asphalt and improve performance

Rejuvenating agent for use with RAP

Restore asphalt quality in aged pavements

Special uses

- Pavement Preservation, including cold applications
- Fuel-resistant sealers for airfield pavements

Guiding Principles for Research

Pavement Serviceability

Design & Construction

- Can current HMA technology be used?
- Maintenance & Recyclability
 - Materials: Cold applications to replace emulsions

Environmental, Health, & Safety

- Pavement Safety: Friction
- Worker Safety: Fumes, H₂S

Performance over time

- Aging/Oxidation
 - Sensitivity to moisture: stripping or degradation

Guiding Principles for Research Focus on Education

Professor Training

Teacher Training

Internet Training

Enrichment programs for elementary and HS students

Guiding Principles for Research Potential Bio-technologies

Algal Biomass

- Convert lipid oil to viscous liquid or resin Biospan
- Fischer-Tropsch conversion of methane SASOL
 - Anaerobic Digestion
 - □ Grow algae that excrete methane
- Thermal Conversion to create gas/liquid/solid:

Cellulosic Biomass

- Thermal conversion
 - □ Fast Pyrolysis
 - Hydrothermal Liquefaction
- Cellulose fermentation Use lignin by-product

Paving Binders Through Molecular Engineering Why Algae?

Voracious appetite for CO₂

Sequester CO₂ at coal utilities & cement plants

Grows in salt water

Concentrates can be shipped via pipeline

Grows in desert climates with constant sun

Ideal temperature: 70°F

Nutrients:

Preferred nutrient source is sewage sludge: N, K, P

Algae strains produce different lipids

Estimated Oil Production: 2000 Gal/acre

>Forty times more than soybeans (48 gal/acre)

Paving Binders Through Molecular Engineering Algae-Phalt Pavements

Grow the right algae

- Genetic engineering for oil quality and yield
- Enclosed production systems (NASA)

Recover oil from living algae

- Filter, dry, and extract with hexane
- Grow Algae with magnetite separate magnetically
- Engineered Algae secrete oil or methane (Exxon JV)
- Sponge-like mesoporous nanoparticles extract oil (Ames)

Convert algal lipids to paving binder

Chemistry, Processing, Catalysts

Evaluate performance of paving materials

Paving Binders Through Molecular Engineering Algae – Where are we now?

Bio-jet from algae: DOD, Boeing, Continental

Bio-fuels from algae

- Ames labs
- AlgaeLink Netherlands firm
- Joint Venture: Exxon & Synthetic Genomics

NASA: Grow algae in off-shore sewage bags

Algal Biomass Organization: Website, Seminars

promotes the development of viable commercial markets for renewable and sustainable commodities derived from algae.

Oilgae: Detailed website & commercial report

Paving Binders Through Molecular Engineering Algae: Technology Limitations

- Oil quantity and type vary with algae species
 - No specificity for the chemistry of product oils
 - "Infect" open ponds with wrong algae
- Recovery of algal oil
 - Drying and extraction is very expensive
 - Host algae killed by the recovery process
 - Ultrasound avoids drying step; difficult scale-up
 - Genetic engineering: oil-secreting algae escape!

No known conversion processes for paving

Paving Binders Through Molecular Engineering Algae to Methane to Binder

Produce Methane from Algae

- Anaerobic Digestion (Auburn)
- Algae produce methane directly
- Gas by-product of thermal conversion

Fischer-Tropsch conversion to high molecular weight hydrocarbons – Sasol

Sasobit by-products are solid wax-like branched alkanes used as asphalt warm mix additives

Paving Binders Through Molecular Engineering Thermal Conversion of Biomass

- Thermal Conversion processes
 - Fast Pyrolysis
 - Hydrothermal Liquefaction

Raw material

- Cellulosic Biomass
- Algal Biomass
- Lignin as by-product of cellulose fermentation

Products

Cracked oils

Gases

Lignin and other heavy solid-like bottoms

Paving Binders Through Molecular Engineering Fermentation of Biomass

Fermentation processes

Ethanol from cellulose (WRI)

Raw material for bio-binder

Lignin

Conversion options

- Bottoms from fast pyrolysis of lignin
- Oils from fast pyrolysis of lignin

Research Objectives: Laboratory Scale Create a synthetic paving binder

From Algal Biomass:

- Conversion of algal oil/lipids, including possible synthesis of bio-polymers (BIOSPAN)
- Fischer-Tropsch conversion of methane (SASOL)
- Use of gas/liquid/solid products of thermal conversion

From Cellulosic Biomass:

- Use of thermal conversion products
- Conversion of lignin: chemical or thermal
- Conversion of ethanol or other bio-fuels (WRI)

Research Objectives: Laboratory Scale Evaluate Grain-oil Based Synthetic Binders

Measure binder properties

Evaluate paving applications appropriate to binder rheology

- Standard HMA mixes
- RAP blending agents
- Pavement Preservation, including emulsion

Determine fit with current design criteria and construction practices

Questions?

If Americans could put a man on the moon in a decade, we have the ingenuity to solve the energy crisis. Obama