Climate Change Impacts on Pavement Engineering

International Sustainable Pavements Workshop

Airlie Center Warrenton, Virginia

January 7-9, 2010

Kamil E. Kaloush , Ph.D., P.E.

Topic

- Is it "climate change impact on pavement engineering" or "pavement engineering impact on climate change"?
- Fit within sustainability?

Criteria for Sustainable Pavements?

- Performance / Durability
 - Material / Design
- Safety
- Ride Quality or Comfort
- Life Cycle Cost
- Energy Consideration
- Quality of Life Issues
 - Highway Noise
 - Air Quality
 - Urban Heat Island
- Recyclability

TRB on Transportation and Climate Change

"Reducing transportation-related emissions of carbon dioxide--the primary greenhouse gas--that contribute to climate change and adapting to the consequences of climate change will be among the biggest public policy challenges facing the transportation profession over the coming decades. "

US GHG Estimates

- Fact: coal is the primary generator of electricity (~50%) in the US
- Electric power generation: ~80% of total GHG emissions , EPA 2006
- Transportation Sector: 15-30%
- Pavements???
 - Raw materials production, manufacturing, placement,...

Needed Tools

- A methodology for road designers and transportation officials to model the impact of different pavement types on climate change potentials.
- Input variables that can be modified by the designer to customize for their specific road configuration and materials type.
- Examine the direct CO₂ emissions related to pavement designs.
- Incorporate as part of the life cycle cost analysis.

Model

 $Total \cdot annual \cdot kgCO_2.Eq/km = \frac{\sum [*W*1000*Dn*(Pn+Mn]) (i*Tp)}{V}$

Where,

T = thickness of pavement layer, meters

W = width of road, meters

Dn = density of pavement material, kg/m³

Pn = material production value, kg CO₂ Eq. /kg

Mn = material mixing value, kg CO₂ Eq. /kg

Di = distance from material production site to application site, km

Tp = transport from production site to application site value, kg CO₂ Eq. /kg material-km Y = road life, years

Ira A. Fulton Schools of Engineering NATIONAL CENTER FEXCELLENCE for SMART INNOVATIONS

Sequestering CO₂ Brent Constanz, 2009

- Transform CO₂, primarily from coal, into carbonate minerals
- Worldwide: reduce CO₂ emissions by 50 billion tons /yr

Night Surface Temperature (C), Phoenix Area, AZ

3-October-2003, ~ 22:39:00

Source is AST_08 ASTER Data Product, NASA

> 10 Kilometers

asu.edu

Need Better Understanding of Influencing Factors

- Albedo, α
- Emissivity, ε
 - controls the far-infrared re-radiation from the surface back to the sky.
- Convection Coefficient, h
- Thermal Conductivity, *k*
- Specific Heat, C
- Density, ρ
- Volumetric Heat Capacity
- Thermal Diffusivity, α,κ
- Porosity, φ

Models for City – Wide Analysis

2	Mee	ting	AF000	Pavement Materials and the Urban Climate Subcommittee, AF000(2)	Marriott, Balcony D	Jan 12 2010 10:15AM- 12:00PM
	Mee	ting	AF000	<u>Climate Change, Energy and</u> <u>Sustainability Impacts on the</u> <u>Transportation Infrastructure</u> <u>Subcommittee, AF000(3)</u>	Marriott, Embassy	Jan 10 2010 4:00PM- 5:30PM
	S	373	ADC20	Climate Change Roundtable	Marriott, Delaware A	Jan 11 2010 7:30PM- 9:30PM
	М		ADC70	<u>Climate Change Joint Subcommittee of</u> <u>ADC70, ADC80</u>	Marriott, Washington B6	Jan 13 2010 12:15PM- 2:15PM
	S	260	A0020T	Federal Climate Change Legislation and Policies: Update and Outlook	Marriott, Maryland B	Jan 11 2010 10:15AM- 12:00PM
		P 441	ADC70	<u>Transportation, Climate Change, and</u> <u>Sustainability</u>	Hilton, International Center	Jan 12 2010 9:30AM- 12:00PM

engineering.asu.edu

Thank You!

