Recent Innovations in the Management of Irish National Roads

Dr. Kieran Feighan – PMS Ray McGowan – PMS Tom Casey – NRA (Ireland) Andrew O'Sullivan – NRA (Ireland)

NRA Pavement Management System

- dTIMS version 8 (now v.9)
- Implemented in 2011/2012 improvements ongoing
- Data Repository
- Location Referencing System
- Condition Data
- Structure Data
- Age
- Surface Type
- Traffic
- Maintenance History

Georeferenced Data

- ESRI ArcGIS is at the centre of all management systems in NRA
- All data collected is georeferenced and mapped to new Location Referencing System (LRS) defined in 2012
- Every video frame is georeferenced, all stored in cloud and on NRA servers (optimised for cloud access)
- Android apps developed for access and portability of video
- Plug-in app for video viewing within ArcGIS

Data-Transfer Tool

PMS Network Surveys

- Full network 1 direction each year
- Skid Resistance
- Ride Quality (IRI)
- Macrotexture
- Rut Depth
- Geometrics
- Video

RSP-General View

Network Surveys post 2012

- Crack Detection
- Crack Types and widths
- Ravelling
- Detailed Cross section (4000 points, 1mm accuracy)
- Ground Penetrating Radar (pavement thickness)

LCMS

- Laser
- Crack
- Measurement
- System

LCMS

Sub-networks

National network is not homogeneous.

•Ranges from brand new fully engineered motorway to legacy pavements

•Management of the network needs to recognise this variability in order to manage intelligently

 Concept of Sub-networks introduced to address this

Sub-networks

•Network is either Engineered or Non-Engineered/Legacy

•Engineered pavements divided into Motorway/Dual Carriageway or Single Carriageway

•Legacy pavement network divided into High, Moderate and Low traffic

Different Allowable Levels of service i.e. Different definitions of Very Good/Good/Fair etc

IRI		-			
Category	Subnet 0	Subnet 1	Subnet 2	Subnet 3	Subnet 4
V Poor	>3	>3.5	> 5	> 5	>7
Poor	2.5 to 3	3 to 3.5	4 to 5	4 to 5	5 to 7
fair	2 to 2.5	2.5 to 3	3.2 to 4	3.2 to 4	4 to 5
Good	1.5 to 2	2 to 2.5	2.7 to 3.2	2.7 to 3.2	3 to 4
V. Good	<1.5	<2	<2.7	<2.7	<3

Rut Depth

Category	Subnet 0 Subnet 1 S		Subnet 2	Subnet 3	Subnet 4	
V Poor	>9	>9	> 15	> 15	>20	
Poor	6 to 9	6 to 9	9 to 15	9 to 15	15 to 20	
fair	5 to 6	5 to 6	6 to 9	6 to 9	9 to 15	
Good	3 to 5	3 to 5	4 to 6	4 to 6	6 to 9	
V. Good	<3	<3	< 4	< 4	< 6	

LPV3

Category	Subnet 0	Subnet 1	Subnet 2	Subnet 3	Subnet 4
V Poor	> 4	> 5	> 6	> 7	> 10
Poor	3 to 4	4 to 5	4 to 6	5 to 7	7 to 10
fair	2 to 3	3 to 4	3 to 4	3.5 to 5	4 to 7
Good	1 to 2	15 to 3	2 to 3	2 to 3 5	2 to 4

Different deterioration model parameters

 $IRI_t = IRI_{t-1} + (a + b \cdot ESAL_t \cdot 10)$

 $RD_t = A \cdot cumESAL_t^b$

	0	1	2	3	4
а	0.05	0.05	0.08	0.11	0.15
		0.005		0.045	
b	0.0025	0.005	0.008	0.015	0.02

	0	1	2	3	4
А	2.4	2.75	3.5	5	7
b	0.35	0.4	0.6	0.7	0.8

$LPV3_{4} = LPV3_{4}_{4} + a \cdot ESAL_{4}$		0	1	2	3	4
	а	0.02	0.2	0.45	0.88	2

Annual monitoring of overlay scheme locations allow models to be updated to reflect "real" deterioration rates

Different trigger values for treatments

•Treatments are triggered on maintenance sections when two or more parameters becomes Poor or Very Poor

Parameter	Subnet 0	Subnet 1	Subnet 2	Subnet 3	Subnet 4
IRI	> 2.5	> 3	> 4	> 4	> 5
Rut	> 6	>6	>9	>9	> 15
LPV	>3	>4	>4	>5	>7

Different Treatment Reset values

Treatment	Parameter	Subnet								
		0	1	2	3	4				
Developer Comford	RD	-2	-2	-2	-2	-2				
(Polativo Posot)	IRI	-0.5	-0.5	-0.5	-0.5	-0.5				
(Relative Reset)	LPV3	-0.5	-0.5	-0.5	-0.5	-0.5				
	CSC	0.6	0.6	0.6	0.6	0.6				
	RD	2	2	3	3	4				
Chromethen	IRI	1	1.4	2	2.2	2.2				
Strengtnen	LPV3	0.8	0.8	1.2	1.2	1.2				
	CSC	0.6	0.6	0.6	0.6	0.6				
	RD	2	2	3	3	4				
Overley	IRI	1.2	1.7	2.2	2.5	2.5				
Overlay	LPV3	0.8	0.8	1.2	1.2	1.2				
	CSC	0.6	0.6	0.6	0.6	0.6				
	RD	2	2	3	3	4				
Decentrust	IRI	1	1.4	2	2.2	2.2				
Reconstruct	LPV3	0.8	0.8	1.2	1.2	1.2				
	CSC	0.6	0.6	0.6	0.6	0.6				

•Annual monitoring allows reset values to be adjusted to reflect what is achievable on the ground

•Overlay schemes where target resets are not being achieved on site can be identified quickly

Pavement Works Programme

- Subnetwork Definitions
- Subnetwork Thresholds
- Percentage above Threshold (PAT)
- Prioritisation based on PATs
- Rolling 3 year programme developed
- Rutting, Ride Quality, Short Wavelength
- Cracking, Ravelling will be added

Percentage Above Threshold (PAT)

- IRI, Rut Depth, LPV3 (short wavelength)
 Example: Subnet 3, IRI poor threshold = 4 (250)
 100m sample unit with IRI = 6,
- PAT = 100*(6-4)/4 = 50%

Subnet 0, Rut Depth Poor threshold = 6 mm (0.25 inches)

100m sample unit with Rut Depth = 12 mm,

PAT = 100*(12-6)/6 = 100%

Prioritisation using PAT

- 100m sample unit must have 2 parameters above threshold to be included
- PAT capped at 150% max for each parameter
- Sum of 2 highest PAT values is Representative PAT
- Much better correlation with "local expert" scheme selection when 2 PAT approach is used
- Combination of 100m PAT sample units into final schemes described in the paper
- Approach has been key to acceptance of PMS selected schemes over previous local "bid" system

Project Level Analysis and Prioritisation - dTIMS

Implementation in dTIMS

Management of Skid Resistance

- Division of network into sections/site categories
- Risk Equalisation
- Motorway mainline versus 2 lane road with tight radius bend
- Prioritisation of Investigation based on points below Threshold
- SCRIM machine used for Data

Site Categories and IL – HD28/11

Site	category and definition	Investigatory Level at 50km/h							
		0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65
Α	Motorway								
В	Dual carriageway non-event								
С	Single carriageway non-event								
G1	Gradient 5-10% longer than 50m								
G2	Gradient >10% longer than 50m								
К	Approaches to traffic signals. pedestrian crossings								
Q	Approaches to and across major and minor junctions,								
R	Roundabout								
S1	Bend radius <250m – dual carriageway								
S2	Bend radius <250m – single carriageway								

Traffic > 250 commercial vehicles / lane/ per day Traffic < 250 commercial vehicles/lane/ per day

Site Inspection

HD 28/11 Desk Top Study / Site Data						Survey Ye	ar	
Compiler Source (HD28/11 : 2.6 & 2.7)								Date
	SCR	IM Survey	Collision		Ot	her (state)		
			Investigation					
County		Route		Site II	D		Locati	ion
Site Location and U	Jse (H	D28/11 A4.1	14)					
What is the Event	type:							
Provide factual info	ormat	ion from SC	RIM Survey an	d analy	sis			
Note Critical Event	Cator	on lif mult	inlo) and II :					
Provide factual infe	Calleg	ion from SC	RIM Suprey and	danah	eie			
Frovide Juctual Inja	mau	ion from sei	All VI Survey uni	aunury	515			
Pavement Conditio	n Dat	a (HD28/11	A4.15)					
Skid Resistance and	d Text	ure Depth:			_			
What is the range	of CSC	on the site	and over what	lenath	?			
Information to be a	provid	ed from SCR	IM Survey and	analys	sis.			
Other Aspects of P	avem	ent Conditio	n:					
Provide data from	Annua	Network S	urvey.					
-			-					
Collision Data if an	plical	ble should h	e appended (i	Refer to	o An	nex 5)		
Compion Data II ap	Pinear		ppenaca (i					

- Site Location and Use
- Pavement Condition
 Data
- Collision Data
- Video Data
- All downloaded to tablet app

Summary

- Late Entrant able to leverage off advances in technology
- Everything fully geo-referenced
- GIS at centre of all management systems including PMS
- Cloud-based image storage and access
- Subnetwork definition crucial for active management
- PAT approach led to acceptance of centralised scheme selection
- Active Skid Resistance Management

Is it working ?

